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1. Review and introduction

The purpose of this paper is to reassess the status of axions in string theory. We begin

with a review and introduction, after which, in section 2, we make some general remarks.

The rest of the paper is devoted to analyzing axions in various string models. The main

conclusion is as it has been in the past: there is some tension between string models of

axions and cosmological bounds, with the axion coupling parameter in many string models

being larger, and hence the axion frequency smaller, than allowed by the usual cosmological

arguments. However, we also discuss some string models, both old ones and new ones, that

are compatible with the usual cosmological bounds. Since the early days of QCD instanton

physics [1 – 4], it has been understood that to the action of QCD, it is possible to add a

CP-violating interaction

Iθ =
θ

32π2

∫
d4xεµναβ tr FµνFαβ . (1.1)
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Here θ is a coupling parameter, and the interaction it multiplies measures the Yang-Mills

instanton number. Since the instanton number, with appropriate boundary conditions,

is an integer (and more generally, the instanton number is determined by the boundary

conditions modulo an integer), θ is an angular parameter.

The strong CP problem [5] is the problem of explaining the extreme smallness of θ,

or more precisely of θ, the effective θ after rotating away the phases of the quark bare

masses. From the upper limit on the electric dipole moment of the neutron, most recently

|dn| < 6.3 × 10−26 e cm [6], one has roughly |θ| < 3 × 10−10. From limits on the electric

dipole moment of 199Hg [7], one has |θ| < 1.5× 10−10. At the factor of two level, the limits

on θ are subject to some QCD uncertainties (for a recent discussion, see [8]) and some

nuclear and atomic uncertainties in interpreting the results from 199Hg.

Broadly speaking, three solutions to the strong CP problem have been proposed:

1. The up quark mass may vanish.

2. θ can relax spontaneously to a suitably small value if a new light particle, the axion,

exists.

3. Finally, it might be that CP is a valid symmetry microscopically, and is spontaneously

broken in such a way that θ naturally turns out to be small.

Concerning the first option, it has been realized since early instanton studies that if

one or more quark bare masses vanishes, then instanton effects, including instanton contri-

butions to electric dipole moments, vanish. The conceivably realistic way to implement this

in the real world is to assume that mu = 0. Though this seems at first to be inconsistent

with estimates of quark mass ratios from hadron phenomenology [9], it is not clear that

this is so once one allows [10, 11] for the fact that the combination mdms/ΛQCD has the

same quantum numbers as mu. However, recent analyses from lattice gauge theory claim

to take such questions into account and to show that mu 6= 0 [12].

The second option originated in the work of Peccei and Quinn [5], who postulated

that there is a U(1) symmetry (often called a PQ symmetry), that is conserved except

for gauge anomalies, and acts by chiral rotations on one or more quarks. If unbroken,

such a symmetry would imply the vanishing of some quark masses, leading us back to the

solution to the strong CP problem with mu = 0. It was assumed in [5], however, that

the quarks get masses from coupling to a scalar field that carries the U(1) symmetry and

has an expectation value. In this case, as was soon noted [13, 14], the PQ breaking leads

to a light spin zero particle — the “axion” — that gets mass only from QCD instanton

effects. It originally was assumed that PQ breaking was tied to electroweak symmetry

breaking, but subsequently models were constructed [15, 16] in which PQ breaking occurs

at a much higher scale. This leads to an “invisible” axion that interacts extremely weakly.

Experiments that might detect such an axion were proposed in [17]. For a review of the

current status of searches for axionic dark matter, see [18]. Recently, significant limits have

also come in searches for axions from the sun [19].

The third idea was developed in [20 – 22]. There is no problem in beginning with an

underlying CP-invariant model, so that the bare value of θ vanishes, and then breaking CP
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spontaneously. However, the effective θ measured at low energies receives a contribution

from the phase of the determinant of the quark mass matrix. The quark mass matrix is

complex (as we know from studies of CP violation in weak interactions). The trick in using

an underlying CP symmetry to make θ small is to ensure that the determinant of the quark

mass matrix is real and positive (to sufficient accuracy), although that matrix is complex.

This is a little delicate, but can be done in a technically natural, and even fairly elegant,

way [20 – 24].

In this paper, we consider primarily the axion hypothesis. As explained in early re-

views [25, 26], in addition to laboratory constraints if Fa is close to the weak scale, this

hypothesis is subject to a large variety of astrophysical constraints. If the axion coupling

parameter Fa (see section 2 for its definition) is less than about 109 GeV, then the axion

couples too strongly and too many axions are produced in various astrophysical environ-

ments, causing red giants to cool too rapidly, for example. There is also astrophysical

trouble if the axion coupling is too weak, in other words if Fa is too large [27 – 29]. With

standard cosmological assumptions, if Fa is greater than about 1012 GeV, the early universe

produces too much axionic dark matter relative to what we see.

Since the upper bound on Fa leads to some tension with string theory, we will describe

it in more detail. It is assumed that the early universe starts out at very high temperatures

with a random value of the axion field. It is hard, according to the argument, for the initial

value of the axion field to be anything but random, since the “correct” value of the axion

field which minimizes the energy depends on the phases of the light quark masses, and these

are irrelevant in the very early universe. (In addition, inflationary fluctuations might have

randomized the initial value of the axion field.) The axion field has a potential energy, which

at low temperatures is of order F 2
πm2

π, that is determined by QCD effects and is irrelevant

in the very early universe. (To evaluate the bound on Fa precisely, one must take into

account the temperature dependence of the effective potential.) The natural frequency

of oscillation of the axion field is of order Fπmπ/Fa. Once the universe cools enough so

that this frequency exceeds the Hubble constant, the axion field begins to oscillate in its

potential. The oscillations describe a bose-condensed ensemble of nonrelativistic axion

particles, and once the field begins to oscillate, the number density of axion particles

diminishes as the universe expands. The larger is Fa, the later the oscillations begin, and

the greater is the energy density of axions at the end. For Fa greater than about 1012 GeV,

the energy density of axions in today’s universe, calculated on these assumptions, would

exceed the dark matter density that we actually observe. The net effect of the astrophysical

and cosmological bounds is to place Fa in a range from about 109 to 1012 GeV — smaller,

as we will discuss, than is natural in many string models.

An obvious question about the axion hypothesis is how natural it really is. Why

introduce a global PQ “symmetry” if it is not actually a symmetry? What is the sense in

constraining a theory so that the classical Lagrangian possesses a certain symmetry if the

symmetry is actually anomalous?1

1A similar question can be asked about the hypothesis that mu = 0, as QCD has no additional symmetries

when mu = 0. Nevertheless, technically natural models that lead to a solution of the strong CP problem via
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It could be argued that the best evidence that PQ “symmetries” are natural comes

from string theory, which produces them without any contrivance. Soon after the discovery

of the Green-Schwarz anomaly cancellation mechanism [30] expanded the possible scope

of string phenomenology, it was recognized [31] that the terms in the low energy effective

action that lead to anomaly cancellation also cause certain light string modes to behave

as axions (for reviews, see chapter 14.3.2 of [32], or section 7.6 of [25]). In certain cases,

some of the would-be axions also get masses from a Higgs mechanism, and one is left over

with a global PQ symmetry. These statements can be unified by saying that the string

compactifications always generate PQ symmetries, often spontaneously broken at the string

scale and producing axions, but sometimes unbroken.

This convincingly shows that axions and PQ symmetries are natural, but in the orig-

inal models, the resulting axion mass parameter Fa was too large for the cosmological

bounds. This problem motivated a number of early contributions. In [33], it was proposed

to circumvent the problem by taking an unbroken PQ symmetry from the string and spon-

taneously breaking it at lower energies, producing an axion of smaller Fa (but less simply

described as a string mode than the axions found in [31]). In [34], it was proposed that,

for anthropic reasons, the usual cosmological bound on Fa might be invalid, avoiding the

contradiction of this bound with most of the string models. The clash between the cosmo-

logical bound on Fa and the simplest string theory predictions for it was also emphasized

in the review article [25].

More recent developments have led to the emergence of many possible new string-based

models of particle physics. In this paper, we will reassess the string theory predictions for Fa

in the light of these new developments. We first reconsider the heterotic string. The value

of Fa for the “model-independent” axion of the weakly coupled heterotic string has been

computed in [35] and more precisely recently in [36]. The value is Fa = 1.1 × 1016 GeV

if one assumes the usual running of αs up to the string scale. We work out analogous

predictions for the “model-dependent” heterotic string axions. We then go on to consider

other models, such as strongly coupled E8 × E8 heterotic strings (axions were previously

discussed in these models in [37]), M -theory on a manifold of G2 holonomy, and models

based on D-branes and orientifolds.

A general conclusion is that, in many models, it is difficult to push Fa drastically below

1.1 × 1016 GeV and easier to increase it closer to the reduced Planck mass,
√

1
8πGN

∼
2.4 × 1018 GeV. (It has been argued earlier that it is hard to make Fa — or its analog

for other light spin zero modes — much higher than the Planck scale [38]. We do not

mu = 0 do exist. For an example, see [11]. Incidentally, mu can be rigorously measured, in principle, from

certain OPE coefficients that violate the chiral symmetry of up quarks (violation of the same symmetry

by instantons is softer at short distances); an example of a precise definition of mu is as follows. Take the

current operator J = uγµu and let S be the scalar operator S = uu. In the operator product expansion

J(x)J(0) ∼ · · ·+f(x)S(0)+· · ·, the operator S appears with a nonzero coefficient function f(x) whether mu

is zero or not. One can define mu as the coefficient of 1/|x|2 in f(x), or more precisely, as the coefficient of

(− ln |x|)a/|x|2, where the exponent a comes from the usual one-loop anomalous dimension of the operator

S. If mu = 0, then f(x) vanishes in perturbation theory (but receives instanton contributions) and is less

singular as x goes to zero than (− ln |x|)a/|x|2.

– 4 –



J
H
E
P
0
6
(
2
0
0
6
)
0
5
1

have anything new to say about this.) Examples include most models with GUT-like

phenomenology, and also models in which QCD gauge fields are supported on D3-branes.

On the other hand, there are also models in which Fa can be lower. One early approach [33]

to lowering Fa below the GUT scale remains potentially valid from a modern point of

view and can be compatible with GUT phenomenology, though possibly not with low

energy supersymmetry. If one is willing to abandon GUT phenomenology, there is another

possibility, in which QCD gauge fields are supported on a “vanishing cycle.” We discuss

various examples, beginning in section 4. These models have string or Kaluza-Klein scales

well below the Planck scale, and hence their very early cosmology may be exotic. Related

ideas have been discussed in [39] (which appeared while the present paper was in gestation).

From a modern point of view, PQ symmetries generated from string theory are al-

ways explicitly violated by instantons of some kind (in addition to the low energy QCD

instantons); candidates include worldsheet instantons [40], brane instantons [41], gauge

instantons from other factors of the gauge group, and gravitational instantons. Such ef-

fects, of course, can be exponentially small. One of the necessary conditions for solving the

strong CP problem via string-derived instantons is that explicit breaking of the relevant

PQ symmetry by non-QCD effects must be much smaller (at least 1010 times smaller, to

make θ small enough) than breaking due to QCD instantons. Thus, in the various mod-

els, in addition to estimating Fa, we also estimate the actions of the relevant instantons.

Suppressing the instantons is a significant constraint on models and in many cases favors

having supersymmetry survive at least somewhat below the GUT scale. (This is the main

reason that supersymmetry enters our discussion. Though for convenience we consider

compactification manifolds that preserve supersymmetry, this will not play an essential

role in most of the analysis. The Barr mechanism [33] may be an exception.)

What about other solutions to the strong CP problem in string theory? If we leave aside

lattice gauge theory evidence [12] that mu 6= 0, one could try to embed mu = 0 in string

theory by leaving a string-based PQ symmetry unbroken. The hard part would probably

be to ensure that the PQ symmetry enforces mu = 0 without setting to zero any other

quark or charged lepton masses. As for the third approach of explaining the strong CP

problem by assuming that CP is spontaneously broken in a way that leaves the determinant

of the quark mass matrix real and positive, string theory passes the first hurdle in that in

almost all string theory compactifications, there is a locus in moduli space at which CP

is unbroken, and thus CP can be interpreted as a spontaneously broken symmetry. (For

example, see section 16.5.1 in [32].) This still leaves much ground to cover, and we do not

know if a mechanism such as that of [21, 33] can be embedded in string theory.

As we have already noted, many string models give Fa too large for the standard

cosmological bounds, and in fact the value Fa = 1.1 × 1016 GeV first given in [35, 36], or

something relatively near it, arises in a number of different models. This value corresponds

to an axion frequency close to 130 KHz. Most models we consider lead to Fa in the range

from roughly 1015 GeV to the reduced Planck mass. At the reduced Planck mass, the axion

frequency is a little less than 1 KHz.

While these values clash with standard cosmological reasoning, proposals have been

made that would relax the cosmological bounds. One proposal involves anthropic argu-
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ments [34]; others involve arranging so that QCD was actually strongly coupled in the early

universe [42], late entropy production due to particle decays [43], or drastically reducing

the energy scale of inflation [44, 45]. A variant of the last proposal (stressed to us by P.

Steinhardt) is the cyclic model of the universe [46], in which the universe might never reach

the high temperatures needed to create an excess of axionic dark matter. The anthropic

proposal would lead one to expect that axionic dark matter would be significant in the uni-

verse, a point made in [34] and reconsidered recently [47]. A model with Fa large also has

to survive certain other cosmological constraints [36]. At any rate, an experiment capable

of finding or excluding axionic dark matter in the most relevant frequency range – from

about 1 KHz to a few MHz — would greatly clarify things. It has been suggested [48, 49]

that this might be accomplished with an experiment using LC circuits.

2. General remarks

The QCD instanton number can be written in many equivalent ways. It is

N =
1

32π2

∫
d4xεµναβ tr FµνFαβ =

1

16π2

∫
d4x tr Fµν F̃µν , (2.1)

where F̃µν = 1
2εµναβFαβ. We use the sign convention ε0123 = 1. The trace is taken in

the three-dimensional representation of SU(3). Alternatively, if we introduce the two-form

F = 1
2Fµνdxµ ∧ dxν , then

N =
1

8π2

∫
tr F ∧ F. (2.2)

Finally, if we write Fµν = F a
µνTa, where Ta is a basis of the Lie algebra, normalized to

tr TaTb = 1
2δab, then

N =
1

64π2

∫
d4xεµναβF a

µνF a
αβ . (2.3)

In writing the instanton number, we normalize the gauge fields so that the covariant deriva-

tive Dµ = ∂µ + iAµ is independent of the gauge coupling g, which instead appears in the

gauge kinetic energy

− 1

2g2

∫
d4x tr FµνFµν = − 1

4g2

∫
d4xF a

µνFµν a. (2.4)

(We write the action in Lorentz metric with signature −+ ++.) It follows that the action

of an instanton, that is a field with F = F̃ and N = 1, is

I =
8π2

g2
=

2π

αs
, (2.5)

where αs = g2/4π.

The axion is a spin zero field a with a PQ shift symmetry a → a + constant that is

broken only, or primarily, by the effects of QCD instantons. The coupling of a to QCD

instantons is
r

32π2

∫
d4x a εµναβ tr FµνFαβ , (2.6)
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where r is a constant. In all of the string and M -theory models, the axion turns out to be

a periodic variable; we normalize it so that the period is 2π. As N is an integer, the action

is well-defined mod 2π if r is an integer, as is the case in the string models.

The axion field also has a kinetic energy, 1
2F 2

a ∂µa∂µa, for some constant Fa. The low

energy effective action of the axion thus includes the terms

∆I =

∫
d4x

(
−F 2

a

2
∂µa∂µa +

ra

32π2
εµναβ tr FµνFαβ

)
. (2.7)

Fa is called the axion decay constant or coupling parameter, because axion couplings are

proportional to 1/Fa. For example, if we introduce a rescaled axion field ã = Faa, then

the kinetic energy becomes canonical, and the axion coupling is proportional to 1/Fa:

∆I =

∫
d4x

(
−1

2
∂µã∂µã +

rã

32π2Fa
εµναβ tr FµνFαβ

)
. (2.8)

As explained in the introduction, the main result of the present paper is that in a wide

range of string models, Fa is in the range from roughly the GUT scale to the reduced

Planck scale, and thus is above the range favored by the usual cosmological bounds.

To see that existence of an axion solves the strong CP problem, first note that if an

axion is present, the physics is independent of the QCD vacuum angle θ. The θ-dependence

of the action is an additional term,

θ

32π2

∫
d4xεµναβ tr FµνFαβ , (2.9)

and if an axion field a is present, this term can be eliminated by shifting a by a constant,

a → a − θ/r. In effect, the existence of an axion promotes θ to a dynamical field ra; the

vacuum expectation value of a must be determined to minimize the energy.

To compute the potential energy as a function of a, one must know how to calculate the

vacuum energy of QCD as a function of θ. Because the up and down quark masses are so

small, this can conveniently be done using current algebra, as reviewed in [50], section 23.6.

In the two flavor case (the u and d quarks are so much lighter than the s quark that the

latter can be neglected), we describe low energy pion physics by an SU(2)-valued field U

with an effective Lagrangian

L = −F 2
π

16
tr ∂µU∂µU−1 +

v

2
tr

(
MU + MU−1

)
. (2.10)

Here, M is the quark mass matrix, which at θ = 0 we can take to be M =
(
mu 0
0 md

)
, with mu,

md being real and positive; also, to get the right pion mass and couplings, Fπ = 184 MeV,

and v(mu + md) = F 2
πm2

π/4. One can include θ by replacing (for example) mu → eiθmu.

So, upon promoting θ to a field ra, we take

M =

(
mueira 0

0 md

)
. (2.11)

The effective potential for the light field a is obtained by minimizing the potential V (U, a) =
v
2 tr(MU + MU−1) as a function of U for fixed a. The minimum energy is at a = 0; the
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term quadratic in a turns out to be

V (a) =
a2

8
r2F 2

πm2
π

mumd

(mu + md)2
. (2.12)

So allowing for the normalization of the axion kinetic energy 1
2

∫
d4xF 2

a (∂µa)2, the axion

mass is

ma =
rFπmπ

2Fa

√
mumd

mu + md
. (2.13)

With the estimate [9] that mu/md
∼= 1/1.8, one has

ma
∼= 5.4 × 10−10 eV · 1.1 × 1016 GeV

Fa/r
. (2.14)

The angular frequency of axion oscillations is ω = mac
2/~, and the ordinary frequency is

ν =
ω

2π
= 130 KHz · 1.1 × 1016 GeV

Fa/r
. (2.15)

We will see that in many string models, Fa/r is naturally fairly near 1.1 × 1016 GeV, the

value found [35, 36] for the model-independent axion of perturbative heterotic strings.

In string models, there are inevitably, apart from low energy QCD instantons, some

other instantons — such as worldsheet or membrane instantons — that violate the PQ

symmetry. Suppose that the axion couples to a stringy instanton of action Sinst with a

natural mass scale M . If there is no suppression due to supersymmetry, the instanton will

generate a potential of the general form −M4 exp(−Sinst) exp(i(a + ψ)) for some phase ψ.

Since we defined the axion field so that the low energy QCD contribution to the axion

potential is minimized at a = 0, ψ really arises from a mismatch in phase between the

high scale instantons and the analogous phase in the low energy contribution, which is

affected by things such as the light quark masses. Lacking a special theory of the light

quark masses, we interpret ψ as an arbitrary phase that is not likely to be particularly

small. The axion potential induced by such instantons and anti-instantons is of order

Ṽ (a) = −2M4 exp(−Sinst) cos(a + ψ). (2.16)

Upon minimizing V (a) + Ṽ (a), we get in order of magnitude

r2a ∼ M4 exp(−Sinst)/F
2
πm2

π. (2.17)

Since ra is the effective QCD theta angle, we require |ra| < 10−10 to agree with experi-

mental constraints, so we need

exp(−Sinst) < 10−10r
F 2

πm2
π

M4
. (2.18)

This is a severe constraint. For example, we if set M to the reduced Planck mass 2.4 ×
1018 GeV, we need

Sinst > 200. (2.19)
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This is a significant constraint on models, as has been stressed in [44] (where it was argued

that this constraint favors the strongly coupled heterotic string over the perturbative het-

erotic string) and as we will discuss further. Many models with large extra dimensions and

a reduced string scale do not help much in reducing Fa, as we will see. But by reducing

the mass M in (2.18), they do relax the requirements for the instanton action.

Those requirements are also relaxed if supersymmetry survives to a scale lower than M .

In this case, instead of generating a potential proportional to the real part of M4 exp(−Sinst

+i(a + ψ)), the instanton may generate a contribution to the superpotential propor-

tional to W0 = M3 exp(−Sinst + i(a + ψ)). When we evaluate the ordinary potential

V = |DW/DΦ|2 − 3GN |W |2, if we simply set W = W0, the a-dependence will cancel. An

a-dependence of V can arise, for example, from an interference of the one-instanton term

with a contribution to W from some other source. We suppose that this other contribution

breaks supersymmetry at some scale µ, with DW/DΦ ∼ µ2. Then the ordinary potential

contains terms that are roughly M2µ2 exp(−Sinst) cos(a + ψ), and (2.18) is replaced by

exp(−Sinst) < 10−10 F 2
πm2

π

M2µ2
. (2.20)

If µ is even a few orders of magnitude below M , or M below the reduced Planck mass, this

makes life easier for many models. Actually, supersymmetry can lead to more suppression of

high scale instanton effects than we have just described if the instantons have fermion zero

modes beyond those required by supersymmetry and contribute not to the superpotential

but to higher order chiral operators, as considered in [51].

One important point is that the instanton that gives the dominant contribution to the

axion mass may not entirely break the shift symmetry of the axion. It may reduce this

symmetry to an n-fold discrete symmetry, for some integer n. For example, for an axion

that actually solves the strong CP problem, the dominant instanton is an ordinary QCD

instanton, and the integer n coincides with the integer r of the axion coupling in eq. (2.6).

The shift symmetries that are not explicitly broken by the instanton are spontaneously

broken by the axion expectation value. That will result, in this approximation, in having

n degenerate vacua differing by the value of the axion field. However, in the context of

string theory, one expects that this degeneracy will always be lifted at a lower energy by

some other, subdominant, type of instanton. The full collection of string theory instantons

(including worldsheet instantons, gauge and gravitational instantons, wrapped branes, etc.)

is expected to fully break the axion symmetries. This statement roughly means that the

theory has the full set of branes and other topological defects allowed by the periodicity of

the axions, just as [52] it has the full set of magnetic charges allowed by Dirac quantization

and the values of electric charges.

Apart from its coupling to the QCD instanton density, the axion may have additional

couplings to Standard Model fields. The PQ shift symmetry allows the axion to have

arbitrary derivative couplings to quarks and leptons. In addition, it may have couplings

just analogous to (2.6) to the “instanton densities” of other gauge fields and gravity. The

coupling to electromagnetism is of particular importance, since it is the basis for axion

searches [17 – 19]. For example, in an SU(5) grand unified theory, the electromagnetic field
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fµν appears in the underlying SU(5) gauge theory via an ansatz

Fµν = fµν




−1/3

−1/3

−1/3

1

0




. (2.21)

If we extend the trace in (2.8) to a trace over the fundamental representation of SU(5), we

get tr FµνFαβ = (4/3)fµνfαβ + · · ·, so in an SU(5) grand unified theory, the coupling of the

axion to electromagnetism is

4r

3

1

32π2Fa

∫
d4x ãεµναβ fµνfαβ. (2.22)

It is convenient to rewrite this in terms of a canonically normalized electromagnetic field.

In our convention, as in (2.4), the gauge coupling appears as a constant multiplying the

action, and the electromagnetic action is
∫

d4xfµνf
µν/4e2, with e the charge of the electron.

In terms of the conventionally normalized electromagnetic tensor F em
µν = fµν/e with kinetic

energy (F em
µν )2/4, the coupling becomes

4r

3

e2

32π2Fa

∫
d4x ãεµναβ F em

µν F em
αβ = − 4rα

3πFa

∫
d4x ã ~E · ~B. (2.23)

Here Ei = F em
0i and Bi = 1

2εijkF
em
jk are the usual electric and magnetic fields, and α =

e2/4π~c. This formula needs to be corrected, however, as we explain in section 9, because

of mixing between the axion and the π0 meson.

In deriving the specific value of the coupling in (2.23), we considered SU(5)-like GUT’s,

but a similar ã ~E · ~B coupling (possibly with a slightly different coefficient) arises in virtually

all string-based models that solve the strong CP problem via an axion. For example, in

heterotic string models, the axion couplings to strong, weak, and electromagnetic instanton

densities only depend on the “levels” of the current algebra (or the embedding in E8), so

with a level 1 embedding of the Standard Model, the formula (2.23) will hold (with r = 1),

even if there is no four-dimensional or even ten-dimensional field theoretic unification. (For

gauge coupling constants, the analogous point is made in [53].) The same formula holds,

most commonly with r = 1, in other string-derived models that incorporate the usual

GUT relations for gauge coupling unification, even if there is no four-dimensional GUT. In

models that are not unified, the couplings may be somewhat different.

General approach. Each string or M -theory model we consider is characterized by an

asymptotic expansion parameter — gs in the case of string theory, 1/R in the case of M -

theory on a G2 manifold of radius R, and so on. The asymptotic expansion is valid when the

relevant parameter is small, and we expect it to give the correct order of magnitude when

the parameter is of order one. To assess how small Fa can be, we calculate in the region

where the expansion parameter is small and then extrapolate to the region where gs, 1/R,

etc., is of order 1. The region with (say) gs À 1 is not accessible in this way, but hopefully
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is accessible via a dual asymptotic expansion valid for large gs. Hence, to the extent that

the asymptotic regions that we consider are representative, we should get a good overview

of axion phenomenology, though in the interior of moduli space our computations are only

valid qualitatively.

Conventions. In our string theory computations, we will adopt a few conventions that

are aimed to minimize the factors of 2π in this paper. We define the string scale by2

`s = 2π
√

α′, and we normalize p-form fields to have integer periods. Thus, our NS B-field

is related to the usual one Bconv by Bconv = `2
sB. As a result, the coupling of the B-field

to the string worldsheet Σ, usually (i/2πα′)
∫
Σ Bconv, becomes 2πi

∫
Σ B. The contribution

to the action proportional to the area of the worldsheet becomes (2π/`2
s)

∫
d2σ

√
det G.

We follow [54], eq. (13.3.22), in normalizing the Type II dilaton φII and Type II string

coupling gII = exp(φII) so that the ten-dimensional gravitational coupling κ (appearing

in the Einstein action
∫

d10x
√

gR/2κ2) is

κ2 =
1

2
(2π)7g2

II(α
′)4 =

g2
II`

8
s

4π
. (2.24)

This convention ensures that SL(2, Z) duality acts by gII → 1/gII , with no numerical

factor. We will use the same convention (2.24) for Type I and heterotic superstring theories

(with, of course, gII replaced by the corresponding string couplings gI = exp(φI) and

gh = exp(φh)). This ensures that under heterotic-Type I duality, we have gI = 1/gh with

no numerical constant. On the other hand, one must be careful of a factor of two in duality

between Type I on a torus T
n and Type II on the orientifold T

n/Z2. Note also the definition

κ2
10 = κ2/g2 in [54], used for all of the string theories,

With our definition `s = 2π
√

α′, the tension of a Dp-brane in Type II superstring

theory becomes (following [54], eq. (13.2.3))

τp =
2π

gII`
p+1
s

. (2.25)

Similarly, to minimize factors of 2π in eleven-dimensional supergravity, we introduce

an M -theory length `11 by `11 = 2π/M11, where M11 is defined in terms of Type IIA

superstring parameters by eq. (14.4.6) of [54]. In these units, the membrane and fivebrane

tensions (in view of [54], eqs. (14.4.11) and (14.4.18)) are

τM2 =
2π

`3
11

, τM5 =
2π

`6
11

. (2.26)

Moreover, from eq. (14.4.5) of that reference, we have 2κ2
11 = `9

11/2π. Moreover, we

normalize the three-form field C to have integer periods; this means that our C is related

2Apart from the fact that it eliminates many factors of 2π from the formulas, a piece of evidence that

this is a good definition is the following. In compactification on a circle, the self-dual radius is R =
√

α′,

and the self-dual circumference is hence L = 2π
√

α′ = `s. The circumference — the length of a nontrivial

closed geodesic — is an intrinsic measure of the size of the circle, while the radius is only a natural notion

if the circle is embedded in a plane.
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to the analogous field C ′ used in [54] by C = C ′/`3
11. The action of eleven-dimensional

supergravity, from eq. (12.1.1), becomes

S11 = 2π

∫ (
1

`9
11

d11x
√−gR − 1

2`3
11

G ∧ ?G − 1

6
C ∧ G ∧ G

)
. (2.27)

The Hodge star operator ? is defined so that if W is a p-form, then

W ∧ ?W =

√−g

p!
Wµ1µ2...µpW

µ1µ2...µp .

We write tr for the trace in the fundamental representation of SU(N), tr for the trace in

the fundamental representation of SO(M), and Tr for the trace in the adjoint representation

of E8 or SO(32). If SU(N) is embedded in SO(2N), then tr = 2 tr. For SO(32), one has

tr = Tr /30, and for E8 one defines tr = Tr /30. When we pick a basis of the Lie algebra,

we require tr tatb = δab and hence (for SU(N)) tr tatb = δab/2.

In M -theory on a manifold with a boundary M10, E8 gauge fields appear on the

boundary. The gauge action is

SYM = − 1

4(2π)`6
11

∫

M10

tr F ∧ ?F. (2.28)

3. Axions in weakly coupled heterotic string theory

The relevant part of the ten-dimensional low energy Lagrangian of the heterotic string is,

from eq. (12.1.39) of [54],

L =
1

2κ2
10

√−gR − 1

4κ2
10

H ∧ ?H − α′

8κ2
10

tr F ∧ ?F

=
2π

g2
s`

8
s

√−gR − 2π

g2
s`

4
s

1

2
H ∧ ?H − 1

4(2π)g2
s `6

s

tr F ∧ ?F. (3.1)

Here R is the Ricci scalar, H the field strength of the two-form field B, and F the E8×E8 or

SO(32) curvature; we have used conventions explained at the end of the section 2 together

with the relation κ2
10/g

2
10 = α′/4 from eq. (12.3.36) of [54].

To reduce to four dimensions, we compactify on a six-manifold Z (not necessarily

Calabi-Yau) with volume VZ . The four-dimensional spacetime (which might be Minkowski

spacetime) we call M . The relevant terms in the four-dimensional effective action include

S =
M2

P

2

∫
d4x(−g)1/2R − 1

4g2
YM

∫
d4x

√−g tr FµνFµν − 2πVZ

g2
s l

4
s

∫ (
1

2
H ∧ ?H

)
, (3.2)

where the four-dimensional reduced Planck mass MP and Yang-Mills coupling gYM are

M2
P = 4π

VZ

g2
s`

8
s

(3.3)

and

g2
YM = 4π

g2
s `6

s

VZ
. (3.4)
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So αYM = g2
YM/4π is given by

αYM =
g2
s`

6
s

VZ
. (3.5)

If we assume the usual level one embedding of the Standard Model gauge fields in

E8 ×E8, then we can identify αYM with αGUT, the unified gauge coupling at the string (or

“GUT”) scale. More generally, if we make a level k embedding of the Standard Model in

the heterotic string (for discussion, see [55]), then tr FµνFµν , when evaluated for Standard

Model gauge fields, has an extra factor of k, which reduces αGUT by a factor of k. Thus

we have in general

αGUT =
αYM

k
=

g2
s`

6
s

kVZ
. (3.6)

In general, it may be that not all factors in the Standard Model gauge theory have

the same k. To determine the axion mass and frequency, we really need the coupling of

the axion to QCD. So we let k denote the level of the color SU(3) embedding in E8 × E8.

In all models considered in this paper, we define αC to be the strong coupling constant

αs evaluated at the string scale or compactification scale – whatever is the scale at which

four-dimensional field theory breaks down — whether or not there is a unified embedding

of the Standard Model. Of course, for the coupling (2.23) of the axion to electromagnetism,

we must interpret k to be the level of the current algebra embedding of the electromagnetic

U(1).

The string scale Ms = 1/`s can be evaluated from the above formulas to be Ms =

(kαG/4π)1/2MP . With the usual phenomenological estimate αC ∼ 1/25, we get the usual

perturbative heterotic string scale Ms ∼ MP

√
k/18.

Axions arise from the B-field of the heterotic string. The components Bµν with µ

and ν tangent to Minkowski spacetime (and constant on Z) can be dualized to make an

axion. Since the existence and properties of this axion do not depend very much on the

choice of Z, it has been traditionally called the model-independent axion of the heterotic

string. Though the name seems somewhat anachronistic in an age in which there are many

other string-based models, we will see that something rather like this mode does exist in

many other asymptotic limits of string theory. Zero modes of Bµν with µ and ν tangent

to the compact manifold Z also have axion-like couplings and are traditionally known as

model-dependent axions.

Model-independent axion. We consider first the model-independent axion. The Bian-

chi identity for the gauge-invariant field strength of H is

dH =
1

16π2
(tr R ∧ R − tr F ∧ F ) . (3.7)

(For example, the normalization can be extracted from eq. (12.1.40) of [54], bearing in mind

that our H is `2
s times the H-field used there.) Now focus on the modes that are constant on

Z with all indices tangent to four-dimensional spacetime. The four-dimensional component

of the B-field can be dualized by introducing a field a that is a Lagrange multiplier for the

Bianchi identity, the coupling being
∫

a
(
dH + 1

16π2 (tr F ∧ F − tr R ∧ R)
)
. Including also
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the B-field kinetic energy from (3.2), the action is

−2πVZ

g2
s l

4
s

∫
d4x

1

2
H ∧ ?H +

∫
a

(
dH +

1

16π2
(tr F ∧ F − tr R ∧ R)

)
(3.8)

Here H is an independent field variable (which can be expressed in terms of B if one

integrates first over a to impose the Bianchi identity). As H has integer periods, a should

have period 2π.3 Instead, we integrate out H to get an effective action for a:

S(a) =
g2
s`

4
s

2πVZ

∫
d4x

(
−1

2
∂µa∂µa

)
+

∫
a

1

16π2
(tr F ∧ F − tr R ∧ R) . (3.9)

Since tr F∧F = 2k tr F∧F , we see that for this particular axion, the integer r characterizing

the axionic coupling is equal to the current algebra level k. For future reference, let us

note that the effect of the dualization from H to a is that F 2
a is simply the inverse of the

coefficient of (1/2)H ∧ ?H in the four-dimensional kinetic energy of H.

So we can read off the axion decay constant:

Fa =
g2
s`

2
s√

2πVZ
=

kαG

2π

MP√
2

. (3.10)

The axion couplings are proportional, according to (2.8), to Fa/k, which is

Fa

k
=

αCMP

2π
√

2
. (3.11)

If we take αC = 1/25, this gives Fa/k ≈ 1.1 × 1016 GeV, as in [36]. If the model is not

unified or the spectrum of particles contributing to the renormalization group running is

not the minimal one, then αC may have a somewhat different value, leading to a somewhat

different value of Fa/k.

In order for the axionic mode whose coupling we have just evaluated to solve the strong

CP problem, low energy QCD instantons must be the dominant mechanism that violates

the associated PQ symmetry. There are a few other candidates to worry about. Gauge

instantons at the string scale have action

2π

αYM
=

2π

kαC
∼ 157

k
, (3.12)

by analogy with (2.5). For k = 1, this is somewhat below the value 200 that we need

according to (2.19) if there is no suppression due to low energy supersymmetry. But

it might be satisfactory if because of supersymmetry a formula such as (2.20) is more

appropriate, or if for some reason αYM is a bit smaller than 1/25. For k > 1, it would be

much harder to suppress the explicit PQ violation adequately.

Because of the a tr R ∧R coupling, the PQ symmetry might also be violated by grav-

itational instantons, if they are relevant to string theory in asymptotically flat spacetime,

but we do not know how to estimate their effects. Finally, it might happen that some other

3One can carry out the duality more precisely, in a way that is valid on a general four-manifold, by

adapting the procedure used in [56] for two-dimensional T -duality.
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part of the E8 × E8 or SO(32) gauge group of the heterotic string becomes strong at an

energy above the QCD scale. Then instantons of that group might be the dominant source

of PQ symmetry violation.

If one of these sources of PQ violation gives an excessive mass to the mode a, then

we need another axion to solve the strong CP problem. Interestingly, there are other

candidates, as we now discuss.

Model-dependent axions. Model-dependent heterotic string axions arise from zero

modes of the B-field on the compact manifold Z. Let there be n = dim H2(Z, R) such zero

modes β1, . . . , βn. We normalize them so that
∫

Cj

βi = δij , (3.13)

where the Cj are two-cycles representing a basis of H2(Z, Z) modulo torsion. Then we

make an ansatz

B =
1

2π

∑

i

βibi, (3.14)

where bi are four-dimensional fields. The factor of 1/2π is included so that the fields bi

have periods 2π, as is conventional for axions. Set

γij =

∫

Z
βi ∧ ∗βj . (3.15)

By dimensional reduction from the B-field kinetic energy in (3.1), the kinetic energy of the

bi fields in four dimensions comes out to be

Skin = − 1

2πg2
s`

4
s

∫
d4x

γij

2
∂µbi∂

µbj . (3.16)

Dimensional reduction of a local action in ten dimensions leads to a four-dimensional

effective action in which the modes bi only have derivative couplings. This results from

the underlying gauge invariance δB = dΛ in ten dimensions, and is why these modes have

approximate PQ shift symmetries.

As first observed in [31], these modes acquire axionic couplings from the one-loop

couplings that enter the Green-Schwarz anomaly cancellation mechanism. The relevant

couplings are

−1

4(2π)34!

∫
B

{
−Tr F ∧ F tr R ∧ R

30
+

Tr F 4

3
− (Tr F ∧ F )2

900

}
. (3.17)

(We have omitted some purely gravitational terms, which lead to a coupling of the modes

bi to tr R ∧ R in four dimensions.) To proceed further, we consider the E8 × E8 heterotic

string, embedding the Standard Model in the first E8, and write tr1 and tr2 for traces in the

first or second E8. The qualitative conclusions are not different for the SO(32) heterotic

string or if the Standard Model embedding in E8 ×E8 is more complicated. The couplings

in four dimensions of the axion modes to tr1 F ∧ F come out to be

− 1

2π24!

∑

i

∫

Z
βi

{
−tr R ∧ R

2
+ 2 tr1 F ∧ F − tr2 F ∧ F

} ∫

M
bi

tr1 F ∧ F

16π2
. (3.18)
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Using the Bianchi identity (3.7), one can alternatively write these couplings as

−
∑

i

∫

Z
βi ∧

1

16π2

(
tr1 F ∧ F − 1

2
tr R ∧ R

)∫

M
bi

tr1 F ∧ F

16π2
. (3.19)

For a reasonably isotropic Z, a typical matrix element of the metric γ defined in (3.15)

is of order V
1/3
Z , and hence a typical linear combination b of the bi has Fb ∼ V

1/3
Z /2πg2

s `4
s.

If we use (3.3) and (3.6) to eliminate VZ and `s in favor of MP and αC , we get

Fb =
α

1/3
C MP

2π
√

2k1/3g
2/3
s

&
α

1/3
C MP

2π
√

2k1/3
. (3.20)

We assume in the last step that gs . 1, for validity of the computation. For k ∼ 1,

αC ∼ 1/25, this gives a typical result Fb ∼ 1017 GeV.

To orient ourselves to how one might reduce Fb, let us consider the case that b2(Z) = 1,

so that there is a single harmonic two-form β and associated axion b. More specifically,

we take Z = C × Y where C is a Riemann surface and Y is a four-manifold, which must

be spin as the theory contains fermions. (Of course, in supersymmetric compactifications,

Z is generally not such a product and is considerably more complicated.) For the mode b,

the integer that appears in the b tr F ∧ F coupling to four-dimensional gauge fields is not

the same as the level k of the current algebra embedding of the Standard Model. Rather,

from (3.19), this integer is4

k′ =
1

16π2

∫

Y

(
tr1 F ∧ F − 1

2
tr R ∧ R

)
. (3.21)

We write VC and VY for the volumes of C and Y . Then as
∫
C β = 1, we have

∫

Z
β ∧ ?β = V −1

C VY =
VZ

V 2
C

. (3.22)

Taking the b kinetic energy from (3.16) and MP from (3.3), we get

Fb =
`2
s

2πVC

MP√
2

. (3.23)

We may as well assume that VC & `2
s (otherwise we should make a T -duality to a better

description in which all dimensions in Z are sub-stringy in scale). So we get an approximate

upper bound on Fb,

Fb .
MP

2π
√

2
= 2.7 × 1017 GeV, (3.24)

which is larger than the value for the model-independent axion and slightly larger than the

generic estimate (3.20).

4Despite the factor of 1/2 multiplying tr R ∧ R, this expression is an integer for Y a spin manifold,

because the signature of a four-dimensional spin manifold is even and in fact divisible by 16.
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To lower Fb, we can take VC large, but there is a limit to how far we can go. From (3.5)

and VZ = VCVY , we have
VC

`2
s

=
g2
s

kαC

`4
s

VY
. (3.25)

For the model to have a qualitatively correct description as a weakly coupled heterotic

string, we require gs . 1. To have a sensible description in terms of compactification on

a manifold C × Y , we require VY & `4
s. If either of these conditions fails, one would want

to make a duality transformation to a better description (in the second case, for instance,

this would be a T -duality transformation) and proceed from there. So the validity of our

approximations requires
VC

`2
s

.
1

kαC
. (3.26)

Inserting this in (3.23), we find that

Fb

k′
&

k

k′

αCMP

2π
√

2
. (3.27)

For k = k′, this lower bound agrees precisely with the actual value that we computed

for the model-independent axion. To minimize Fb/k
′, we can take k = 1 and try to take k′

large. Let us see how far we can get if we assume a supersymmetric compactification. A

Calabi-Yau three-fold Z cannot quite be a product C × Y . But it can be a fibration, with

fibers Y = K3, over C = CP
1. This is good enough to justify the above formulas. We let

N1 and N2 denote the instanton numbers in the two factors of the E8 × E8 gauge bundle

over Y . Supersymmetry requires N1, N2 ≥ 0, and the Bianchi identity for H implies that

N1 + N2 = 24 (we use the fact that 24 = (1/16π2)
∫
K3 tr R ∧ R is the Euler characteristic

of K3). Moreover, from (3.21), we have k′ = N1 − 12, so |k′| ≤ 12.

So we can get Fb/k
′ as small as about 1015 GeV with this kind of model, by putting

all instantons in the same E8 to get k′ = 12. (In fact, this is the most traditional type

of heterotic string model.) To get Fb as small as this, we need to make VC as large as

possible. There is another virtue in doing so. Because of the coupling 2πi
∫
Σ B to the string

worldsheet Σ, a worldsheet instanton described by a string wrapping around C explicitly

breaks the PQ symmetry of this particular axion. The action of such an instanton is, in our

conventions, I = 2πVC/`2
s. To suppress explicit PQ violation, we should make VC large.

When the inequality in (3.27) is saturated, we have I = 2π/kαC , the same value as for the

model-independent axion. Again, for k = 1 and with the help of some suppression by low

energy supersymmetry, the PQ symmetry might be good enough to solve the strong CP

problem.

We introduced this example as a convenient special case, but actually, to get Fb small

by making a two-cycle C large, a fibration over C is the natural case to consider. Another

approach to making Fb small is to leave VC/`2
s of order 1 and try to make k′ very large.

An obvious potential problem with this comes from the formula (3.21) for k′. If VY ∼ `4
s

(since larger VY makes Fb larger) and k′ is large, then F or R is large pointwise and the

approximations may be invalid. We consider some examples seeking to make k′ large in

section 5. But first, we repeat our analysis up to this point for the strongly coupled E8×E8

heterotic string.
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4. Heterotic M-theory

To describe the strongly coupled E8 ×E8 heterotic string, we consider compactification of

M -theory on Z × I, where Z is a six-manifold and I is an interval. At each end of the

interval I lives an E8 gauge multiplet. Our M -theory normalizations have been defined in

section 2.

If the interval I is relatively short, the metric on Z × I is approximately a product

metric. In this case, we write πρ for the length of I, VZ for the volume of Z, and V7 = VZπρ

for the volume of Z × I. (Lengths and volumes, of course, are now computed using the

M -theory metric.) When I becomes long, the metric on Z × I ceases to be a product

metric, and if the instanton numbers are not equal at the two ends of I, then the volume of

Z is larger at one end than the other [57]. We have the option of embedding the Standard

Model into either of the two ends. In the usual approach to phenomenology with the

strongly coupled heterotic string, the Standard Model lives at the end where volume of Z

is larger. For now, we assume that this is the case. (The other possibility is treated in

section 4.3.) We let VZ be the volume of Z at the end where the Standard Model lives.

For the volume of Z × I, we write V7 = VZπρε, where ε takes account of the shrinking of

Z and equals 1 if ρ is small and 1/2 if the volume of Z varies linearly from VZ at one end

to zero at the other.

By dimensional reduction from (2.27) and (2.28), we find

M2
P =

4π2ρVZε

`9
11

αYM =
`6
11

VZ
(4.1)

The value written in (4.1) for αYM = g2
YM/4π = kαC is valid at either end of I as long as

one uses the appropriate value of VZ at that end; since we have assumed that VZ is the

larger of the two volumes, the formula has really been written for the end of I at which the

gauge coupling is weaker. If the Standard Model lives at the end with smaller volume of

Z, the effects of warping can be significant; we will discuss this case in a later subsection.

4.1 Model-independent axion

We will now compute the coupling parameter Fa of the model-independent axion. The

model-independent axion comes from a mode of G = dC with one index tangent to I and

the other three tangent to the four-dimensional spacetime M :

G =
dx11

πρ
H. (4.2)

With this normalization, H, like G, has integer periods. The kinetic term for the four-

dimensional field H comes from Kaluza-Klein reduction of (2.27):

−2VZε

ρ`3
11

∫

M

1

2
H ∧ ?H. (4.3)
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As in the discussion of (3.13), H can be dualized to an axion a, with Fa equal to the inverse

of the H-field kinetic energy in (4.2):

Fa =

√
ρ`3

11

2VZε
=

kαC

2πε

MP√
2

. (4.4)

For small ρ, ε = 1 and the result for Fa agrees with the analogous formula for the weakly

coupled heterotic string; for large ρ, Fa may be larger by a factor of 2 because of the

factor 1/ε.

This computation also gives us our first illustration of the fact that in many classes of

model, it is hard to significantly reduce Fa by going to a model with large extra dimensions.

Heterotic M -theory gives a model with a large fifth dimension if we simply assume that the

instanton numbers are equal at the two ends of I, in which case ρ can become very large,

limited only by experimental tests of Newton’s law of gravity. The above computation gave

a result for the coupling parameter Fa/k that can be expressed in terms of the observables

αC and MP , independent of ρ. (When the instanton numbers are equal at the two ends,

the metric on Z × I is nearly a product and we can set ε to 1.) Of course, the reason that

this happened is that the relevant axionic mode is a bulk mode, like the graviton.

The discussion of effects other than low energy QCD instantons that violate the shift

symmetry of the model-independent axion would be similar to what it was for weak cou-

pling. Obvious candidates are string scale instantons with action 2π/kαC , gravitational

instantons, and instantons in the second E8.

4.2 Model-dependent axions

The model-dependent axions appear in an ansatz for the C-field:

C =
∑

i

βi
bi

2π
∧ dx11

πρ
. (4.5)

The βi are defined as in (3.13), and as before the bi are periodic scalars with period 2π

and approximate shift symmetries.

The couplings of these modes to tr F∧F and tr R∧R in four dimensions are the same as

they were for weak string coupling. In fact, those couplings, being integers, are independent

of gs. From the standpoint of heterotic M -theory, these couplings are evaluated by reducing

to four dimensions the term (2π/6)
∫

C ∧G∧G in the M -theory effective action, and using

the boundary condition [58] that G|x11=0 = (tr1 F ∧ F − 1
2 tr R ∧ R)/16π2, G|x11=πρ =

−(tr2 F ∧ F − 1
2 tr R ∧ R)/16π2). Upon making the reduction, one finds, just as for the

weakly coupled heterotic string, that the relevant axionic couplings are

∑

i

∫

Z
βi ∧

1

16π2

(
tr1 F ∧ F − 1

2
tr R ∧ R

)∫

Z
bi tr F ∧ F

= −
∑

i

∫

Z
βi ∧

1

16π2

(
tr2 F ∧ F − 1

2
tr R ∧ R

)∫

Z
bi tr F ∧ F. (4.6)
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The two expressions are equal because of the Bianchi identity, which implies that [tr1 F ∧
F ]+[tr2 F ∧F ]− [tr R∧R] = 0 (we write [α] for the cohomology class of a closed differential

form α).

The Bianchi identity tells us that [tr1 F ∧F − 1
2 tr R∧R] = 0 if and only if [tr1 F ∧F ] =

[tr2 F ∧ F ] , that is, if and only if the two E8 bundles over Z are topologically equivalent.

Precisely when this is so, it is possible in heterotic M -theory for the eleventh dimension

to be extremely long, giving a simple example of a model with a large extra dimension.

But in this model, the phrase “model-dependent axions” is a misnomer, as the modes in

question do not have axionic couplings. When [tr1 F ∧ F ] 6= [tr2 F ∧ F ], the bi do have

axionic couplings, and the length of the eleventh dimension has an upper bound, which

was found in [57] and which we will discuss later.

By dimensional reduction, ignoring the variation of the geometry with x11, the kinetic

energy of the fields bi is
ε

2π2`3
11ρ

∫

M

1

2
γM

ij ∂bi ∧ ?∂bj , (4.7)

where now

γM
ij =

∫

Z
βi ∧ ?βj . (4.8)

The integral is evaluated at the end where the volume of Z is greater.

If Z is fairly isotropic, matrix elements of γM are of order V
1/3
Z and so the kinetic

energy for a generic linear combination of the bi is proportional to F 2
b ∼ εV

1/3
Z /2π2`3

11ρ.

As will be clear from our evaluations below, this leads to Fb being above the GUT scale

(except in the case that the bi lack the couplings of axions). As in the weakly coupled case,

we can try to make Fb small for one mode by taking a two-cycle to be large. We can also

try to make Fb small by making ρ large. We will consider first the case of a large two-cycle,

and show that it is not really independent as it forces us to try to make ρ large.

So we again consider the case that Z is fibered over a Riemann surface C, with fiber

Y . The volumes then factorize: VZ = VCYY . Moreover, for the axionic mode that is a

pullback from C, the relevant component of the metric is

∫

Z
β ∧ ?β =

VZ

V 2
C

. (4.9)

For this axion, we get then

Fb =
MP `3

11

2π2
√

2VCρ
. (4.10)

We can try to make Fb small by making VC large, but as in the weakly coupled case, there

is a limit to how far one can go in that direction. Since kαC = `6
11/VZ = `6

11/VY VC , we

have 1/VC = kαCVY /`6
11. The M -theory description only makes sense if VY & `4

11, so

1/VC & kαC/`2
11. Hence

Fb &
kαC

2π

MP√
2

`11

πρ
. (4.11)

So we cannot make much progress in reducing Fb by going to large VC , unless ρ is also

large.
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Let us then discuss what happens upon taking ρ large. If [tr1 F ∧F ] = [tr2 F ∧F ], then

in heterotic M -theory, `11/πρ can be many orders of magnitude less than 1, and Fb can

be in the range allowed by the usual cosmological arguments, 109 GeV . Fb . 1012 GeV,

or much lower. However, precisely in this case, as we have already discussed, the modes bi

lacks axionic coupling to tr F ∧ F .

So if we want to solve the strong CP problem using some of these modes as axions,

we have to assume that [tr1 F ∧ F ] 6= [tr2 F ∧ F ]. That being so, there is an upper bound

on πρ/`11, which [57] cannot be larger than roughly α
−2/3
C times a number of order one.

(Moreover, reasonable GUT phenomenology can arise [57, 44] when πρ is near the upper

bound.) Because the axion kinetic energies (4.7) or (4.10) are proportional to 1/ρ, this

enables us to suppress the Fbi
by about an order of magnitude relative to the familiar value

αCMP /2π
√

2 ∼ 1.1 × 1016 GeV.

The upper bound on ρ comes from the way the metric on Z varies as a function of the

eleventh dimension. For example, if the volume of Z is going to zero at one endpoint of I

(which is not necessarily so as the extended Kahler cone has other boundaries), then the

upper bound on the possible value of πρ was very roughly, within perhaps a factor of 2,

estimated in [57] to be

πρmax =
VZ

`3
11

∣∣∣
∫
Z ω ∧ tr F∧F− 1

2
tr R∧R

16π2

∣∣∣
, (4.12)

where ω is the Kahler class of Z. Under an overall scaling of Z, the integral in the

denominator scales as V
1/3
Z , so πρmax/`11 scales as V

2/3
Z /`4

11 ∼ α
−2/3
C . In the example that

Z is a K3 fibration over a large two-cycle C, if we assume that the dominant contribution

to the integral in the denominator is
∫
Y (tr1 F ∧ F − 1

2 tr R ∧ R)/16π2 ·
∫
C ω, then we can

estimate the integral as VC |N1 − 12| = VC |k′|, so

πρmaxVC . VZ/`3
11|k′|. (4.13)

When this is inserted in (4.10), we get Fb/|k′| & kαCMP /2π
√

2 ∼ k · 1.1 × 1016 GeV, a

familiar value from the heterotic string. What has happened is simply that since ρ and VC

vary reciprocally, we cannot make them both large.

Explicit violation of the PQ symmetries. The PQ symmetry of these modes is

violated explicitly by membrane instantons wrapped on D×I, where D is a two-cycle in Z.

The volume of such a membrane is VD = πρε̃ (where ε̃ is a factor similar to ε and accounts

for how the area of D varies in the eleventh dimension). As the M2-brane tension is 2π/`3
11,

the action is S = 2π2ρVD/`3
11. For a fairly isotropic Z, VD/`2

11 ∼ (VZ/`6
11)

1/3 ∼ α
−1/3
C , and

πρmax/`11 ∼ α
−2/3
C , so S ∼ 2π/αC . Hence, explicit violation of the PQ symmetries might

be small enough to solve the strong CP problem.

For the case of a fibration Z → C with a large two-cycle C, our inequality (4.13)

together with (4.1) leads to S = 2πε̃/αC |k′|. So we might need |k′| = 1 to have a sufficiently

good PQ symmetry for this mode.
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4.3 Warped compactification

In heterotic M -theory, the metric on M × Z × I is actually a warped product, not an

ordinary product, but we have not taken this into account so far. Here, we study the

question of whether warping could play an important effect in heterotic M -theory. As we

will see, the warping does not change the qualitative conclusions in the usual approach to

phenomenology in which the Standard Model is enbedded at the end of I at which the

volume is larger. However, it can be quite important in the opposite case.

In supersymmetric compactification of heterotic M -theory, the warped metric takes

the simple form [57, 59, 60]

ds2 = e−f(x11)ηµνdxµdxν + ef(x11)
(
gmndymdyn + dx11dx11

)
. (4.14)

Here ym are local coordinates on Z and x11 is parameterizes the heterotic M -theory interval.

The warp factor is

ef(x11) = (1 + x11Q)2/3. (4.15)

(Without assuming low energy supersymmetry, more general fluxes are possible, but the

supersymmetric case seems general enough to illustrate our point.) The parameter Q,

which we will loosely call “instanton number,” is given by

Q =
`3
11

2VZ

∫

Z
ω ∧ 1

16π2

(
tr1 F ∧ F − 1

2
tr R ∧ R

)
, (4.16)

where ω is the Kahler form of Z. Note that, if the instanton number at x11 = 0 is larger

than at x11 = πρ, then the integral (4.16) is negative. This follows from the supersymmetry

relation ωijF
ij = 0. The integral is roughly V

1/3
Z = `2

11(kαC)−1/3, so we express it in terms

of a dimensionless number q of order one

Q =
(kαC)2/3

2`11
q. (4.17)

If the instanton number at the x11 = 0 boundary is greater than the instanton number at

the other boundary, Q is negative and Z shrinks along x11. In this case, there is a critical

coordinate distance

πρmax =
1

|Q| (4.18)

at which the warp factor (4.15) becomes zero and our supergravity approximation breaks

down. Hence, in the following we assume that ρ < ρmax. In the opposite situation with Q

positive, Z expands along the interval so the length of the interval could be in principle

arbitrarily large.

Dimensional reduction of the gravity action (2.27) to four dimensions gives

S =
2πVZ

`9
11

∫ πρ

0
dx11e5/2f(x11)

∫
d4x

√−gR, (4.19)

whence the four-dimensional Planck mass is

M2
P =

3πVZ

2`9
11Q

[
(1 + πρQ)8/3 − 1

]
. (4.20)
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The gauge fields of the two E8’s live on the two ends of the interval. Reducing the

Yang-Mills action (2.28)

SYM = − 1

4(2π)`6
11

∫

M10

tr F ∧ ?F (4.21)

to four dimensions gives the gauge coupling as a function of the boundary location

1

αYM (x11)
=

V0

`6
11

(1 + x11Q)2. (4.22)

In the linear approximation this agrees with the result of [57]

d

dx11

(
1

αYM

)
= `−3

11

∫

Z
ω ∧

(
tr1 F ∧ F − 1

2
tr R ∧ R

)
. (4.23)

Standard approach to phenomenology. Now let us re-examine the case that the

Standard Model is embedded in the larger of the two boundaries. This will give results

qualitatively similar to those we found above, but somewhat more precise. With the

Standard Model embedded at the larger end, the volume is decreasing away from the

Standard Model boundary. At a coordinate distance πρcrit = 1/|Q| the volume becomes

zero in our approximation. This gives an upper bound on MP [57]. Substituting 1/|Q| for

πρ into the expression for the Planck mass we find

M2
P,max =

1

`2
11

3π

q(kαC)5/3
, (4.24)

which is a factor of 3/2 larger [59] than the limit on M2
P obtained in the linear approxima-

tion [57].

The warping of the metric (4.14) affects the internal wavefunction of the axion as well.

The warping is different for the model-independent and for the model-dependent axions.

For model-independent axion we modify the ansatz (4.2) by a nontrivial warp factor

C = αeg(x11)B(xµ) ∧ dx11, (4.25)

where α is a normalization constant and g(x11) captures the dependence of C on x11. To

find g we require that the three-form equation of motion d ? dC = 0 in eleven dimensions

reduces to the four-dimensional equation of motion d4 ?4 d4B = 0 for the two-form field B.

We substitute (4.25) into the equation of motion d ? dC = 0 which, after taking the first

exterior differential and the Hodge dual becomes

d
(
eg+ 7

2
fd volZ ∧ (?4d4B)

)
= 0, (4.26)

where d volZ is the volume form on Z. Expanding the second exterior differential into its

four-dimensional and seven-dimensional parts d = d4 + d7, (4.26) becomes

d4 ?4 d4B + d7

(
g +

7

2
f

)
?4 d4B = 0. (4.27)
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In writing this we suppressed an overall factor of eg+7f/2d volZ . The equation (4.27) reduces

to the four-dimensional equation of motion for the massless two-form B if g = −7f/2 + c.

Here c is a constant that we absorb into the normalization constant α of the C-field. Hence

the ansatz for the model-independent axion is

C = α(1 + x11Q)−7/3B ∧ dx11. (4.28)

We fix the normalization constant α by requiring G = dC to have integer periods. We

assume that B is normalized so that H = dB has integer periods, so that the axion has

period 2π. With this normalization, G will have integer periods if α(1 + x11Q)−7/3dx11

integrates to one on the M -theory interval I. This condition fixes α to be

α−1 =
3

4Q

[
1 − (1 + πρQ)−4/3

]
. (4.29)

Dimensional reduction of the G-field kinetic energy (2.27) gives the kinetic term for the

four-dimensional B-field
2παVZ

`3
11

∫ (
−1

2
H ∧ ?H

)
. (4.30)

In four dimensions, B is dual to an axion with axion decay constant equal to the inverse

of the coefficient of the H-field kinetic energy

F 2
b =

1

`2
11

3(kαC)1/3

4πq

[
1 − (1 + πρQ)−4/3

]
. (4.31)

From (4.31) we read off the dependence of Fb on the length of the M -theory interval.

We assume that Q is negative, so that Z gets smaller away from the Standard Model

boundary. When the interval is short, this agrees with the formula (4.4) that does not

take into account warping. As the interval gets longer, both Fb and MP grow compared to

`−1
11 . At πρmax = 1/|Q|, MP reaches its maximum value (4.24) while Fb becomes formally

arbitrarily large. Intuitively, this is because the wavefunction of the model-independent

axion is concentrated towards the x11 = πρ end of the interval, as is clear from (4.28), so

the axion couples weakly to the Standard Model fields which are supported on the other

end of I. However, before Fb becomes super-Planckian, the size of Z at the x11 = πρ

end of the interval becomes sub-Planckian and our low energy supergravity description

breaks down. This regime should be studied in a well behaved dual description, such as F-

theory [61 – 63]. We estimate the maximum value of πρ for which we can trust our formula

for Fb by requiring that the volume of Z is at least one in eleven-dimensional Planck units.

From the warped metric (4.14) we read off the dependence of the volume of Z on x11 to

be V = `6
11(1 + x11Q)2/(kαC). Requiring this to be at least `6

11 bounds the length of I:

(1 + πρmaxQ) . (kαC)1/2. Substituting this into (4.31) we estimate an upper bound on

the decay constant of the model-independent axion

Fb .
1

`11

√
3

4πq(kαC)1/3
=

kαC

2π
√

q
MP . (4.32)
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Up to a factor of order one, this agrees with the formula (4.4) that does not take into

account warping. Hence, the warping does not modify the scale of the axion coupling

parameter significantly, when the Standard Model is embedded into the larger of the two

boundaries of I.

Let us now find the warp correction to the axion decay constant of the model-dependent

axions. We start by modifying the ansatz (4.5) for the three-form field with a warp factor

C = α
∑

i

eg(x11) bi

2π
βi ∧ dx11. (4.33)

Here α is an normalization constant that we will determine later. To find the warp factor

g(x11), we substitute (4.33) into the equation of motion d ? dC = 0 which, after taking the

first exterior derivative and the Hodge star operator becomes
∑

i

d
(
?4d4bi ∧ ?6βi eg− 1

2
f
)

= 0. (4.34)

The symbols ?4, ?6 denote the four and six-dimensional Hodge operators. We simplified

the equation using the fact that βi are closed. (4.34) reduces to a set of four-dimensional

equations of motion for massless scalars bi if g = f/2 plus a constant that we can absorb

into the normalization constant α. So the model-dependent axions come from the ansatz

C = α
∑

i

(1 + x11Q)1/3 bi

2π
βi ∧ dx11. (4.35)

The normalization constant α is fixed by requiring that each three-form α(1+x11Q)1/3βi∧
dx11 has unit flux through Ci × I. Since

∫
Ci

βi = 1, this gives

α−1 =
3

4Q
[(1 + πρQ)4/3 − 1]. (4.36)

Dimensional reduction of the C-field kinetic energy (2.27) leads to the kinetic terms of the

axions bi
α

2π`3
11

∫

M
−1

2
γM

ij ∂bi ∧ ?∂bj (4.37)

with γM
ij given by (4.8).

In the standard approach to phenomenology, the volume of Z decreases away from the

end of the interval with Standard Model fields. We saw already in the linear approxima-

tion (4.10) that Fb decreases as we increase the length of the interval I. Hence, to find the

smallest possible Fb we take ρ large, πρmax = |Q|−1. For an axion coming from a generic

cycle C, we estimate the integral
∫
Z β ∧ ?β ∼ V

1/3
Z = `2

11(kαC)−1/3, so the axion decay

constant in terms of the Planck mass (4.24) is

Fb &
qkαC

3π
MP , (4.38)

which is close to the familiar value 1.1 × 1016GeV. As we discussed before, we can try to

make Fb small by taking size of the cycle C large. So we take Z to be a fibration over a

large Riemann surface C with a fiber Y . A calculation identical to the one performed in

section 4.2 shows that taking C large does not help in lowering Fb because VC and ρmax

vary reciprocally, so we cannot make them both large.
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Non-standard approach to phenomenology. The warping does not modify the scale

of the axion coupling parameter significantly, when the Standard Model is embedded into

the larger of the two boundaries of I. On the other hand we expect the effects of the

warping to be pronounced if the size of Z is increasing away from the Standard Model

boundary. In this case, the length of the interval can be arbitrarily large. As we increase

it, the volume of the seven-dimensional compactification manifold gets larger so the four-

dimensional Planck scale grows compared to the M -theory scale `−1
11 . This is clear from

the formula (4.20) for MP with Q taken to be positive.

The wavefunction of the model-independent axion (4.28) is localized near the SM end

of the interval, so the axion decay constant stays close to the M -theory scale `−1
11 . Indeed,

in the limit of large interval πρ À Q−1, the axion decay constant (4.31) approaches a

constant multiple of `−1
11

F 2
b =

1

`2
11

3(kαC )1/3

4πq
, (4.39)

while the Planck mass (4.20) grows with πρ as

M2
P =

1

`2
11

3π(πρQ)8/3

q(kαC)5/3
. (4.40)

Hence, increasing ρ lowers the axion decay constant compared to MP

Fb =
kαC

2π

MP

(πρQ)4/3
. (4.41)

Solving (4.39) and (4.40) for M11 and πρ, we get

M11 = Fb

√
4πq

3(kαC)1/3
,

πρ = `11

(
MP

Fb

)3/4 21/4(kαC)1/12

π3/4q
. (4.42)

For phenomenologically preferred axion decay constant 109GeV < Fb < 1012GeV, the

allowed range of the M -theory parameters is

3.5 × 109GeV . M11 . 3.5 × 1012GeV,

4.2 × 106`11 & ρ & 2.3 × 104`11. (4.43)

Let us now consider a generic model-dependent axion with
∫
Z β ∧ ?β ∼ V

1/3
Z . We get

the axion decay constant by substituting for the normalization constant α = 4Q
3 (πρQ)−4/3

from (4.36) into (4.37)

Fb = MP
4

3πq(kαC)1/3

(
`11

πρ

)2

. (4.44)

To simplify (4.44) we used that Q = q(kαC)2/3/2`11, VZ = `6
11/(kαC ) and the expres-

sion (4.40) for MP . It is clear from the formula for Fb that as the length of I gets larger,

the axion decay scale is parametrically lowered compared to MP . We can estimate how
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much is it necessary to elongate the interval to bring Fb down to the cosmologically favored

region. From (4.44) and (4.40) we express πρ and M11 = `−1
11 as

M11 = Fb

(
MP

Fb

)1/3 (
3πkαC

q

)1/6

πρ = `11

(
MP

Fb

)1/2 2√
3πq(kαC)1/3

. (4.45)

If we take k, q = 1, then the axion decay constant takes the phenomenologically preferred

values 109GeV < Fb < 1012GeV for the M -theory scale and the length of the interval lying

in the range

1.1 × 1012GeV . M11 . 1.1 × 1014GeV

5.4 × 104`11 & πρ & 1.7 × 103`11. (4.46)

Generalization to other warped compactifications. In the context of heterotic M -

theory, we have seen how significant warping can lower the axion decay scale. A similar

effect can occur in other warped compactifications, for example in compactifications of

the type II superstring. If the axion is supported near a region with significant warping,

its decay constant will be lowered compared to the Planck scale just like in the case of

heterotic M -theory with non-standard approach to phenomenology.

5. Anomalous U(1) symmetries in string theory

To discuss the role of anomalous U(1) symmetries for axion physics, we begin by consid-

ering compactifications of the heterotic string on a smooth six-manifold. In many such

compactifications, the low energy gauge group, understood as the subgroup of E8 × E8 or

SO(32) that commutes with the gauge field expectation value on the compact manifold,

contains an anomalous abelian gauge symmetry U(1)B (or several such symmetries). For

example, this is very common in supersymmetric (0, 2) models in which the gauge fields

on the compact manifold have U(1) factors. The anomaly appears in the charges of the

massless fermions. It is canceled by a Green-Schwarz mechanism involving one of the axion

multiplets. For brevity, we will consider the case that the axion in question is the model-

independent one. The relevant fields participating in the four-dimensional Green-Schwarz

mechanism are in that case the vector field VB of the anomalous U(1)B and the axion-

dilaton field S = 1/g2
B + ia/8π2, where gB is the four-dimensional gauge coupling of U(1)B .

The Kahler potential for these fields is [66, 67, 65]

K = −M2
P ln(S + S − cVX), (5.1)

where c = tr B/6 is a multiple of the chiral trace of the generator of U(1)B over the massless

fermions. The chiral trace counts right-handed fields with an extra minus sign compared

to left-handed ones. Under a gauge variation VB → VB + i(ΛB − ΛB), the axion-dilaton

superfield transforms as S → S + icΛB . Hence the axion has shift symmetry

a → a + c θB, (5.2)
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where θB = ReΛB |θ=θ=0. This makes possible the anomaly cancellation. The axion has

anomalous couplings a tr Fi∧Fi to nonabelian gauge fields; the variation of these couplings

under (5.2) exactly cancels the U(1)B anomaly.

We can now study the four-dimensional effective theory of the axion and the U(1)B
gauge fields. The effective action contains the terms

−1

2
F 2

a

(
∂µa + Bµ

tr B

12

)2

+ ζ2DB + a
1

16π2
tr (F ∧ F )QCD, (5.3)

where the first two terms come form expanding the Kalher term (5.1) and tr (F ∧ F )QCD

is a multiple of the QCD instanton density. Fa = kαCMP /(2π
√

2) is the familiar axion

decay constant of the model-independent axion and ζ is the Fayet-Iliopoulos term

ζ2 = kαCM2
P

tr B

48π
. (5.4)

From the effective action (5.3), we see that the gauge boson eats the axion and acquires a

mass via the Higgs mechanism:

MB =
kαC

`s

tr B

6
√

2
. (5.5)

Below the scale MB , the anomalous gauge boson decouples, leaving behind, in sigma model

and spacetime perturbation theory, an anomalous global U(1)B symmetry [31]. This sym-

metry is broken explicitly by instantons.

It has been recognized in [70] that the surviving global symmetry can be used to solve

the strong CP-problem with Fa well below the string scale. In reducing to four dimensions,

the four-dimensional massless spectrum frequently contains scalars, i.e. from the gauge

bundle moduli, that are charged under the anomalous symmetry and are neutral under

other gauge groups. For illustration, we assume that there is one such scalar field φ with

charge q under U(1)B . If φ acquires a VEV 〈φ〉, this spontaneously breaks the global U(1)B .

We will assume that this VEV results from some dynamics at an energy scale below the

string scale, so that |〈φ〉| < MB . The U(1)B gets realized nonlinearly by shifting the phase

of φ = |φ|eib

b → b + qθB . (5.6)

The kinetic energy of b follows from the φ kinetic term −|Dµφ|2

−|φ|2(∂µb − qAµ). (5.7)

Hence, b is a PQ axion with decay constant Fb =
√

2|φ|. Its coupling to the QCD instanton

density is determined by the underlying U(1)B anomaly to be

b
c

16π2q
tr (F ∧ F )QCD (5.8)

with axionic coupling k = c/q. The couplings of this axion to matter are determined by

the ratio Fb/k. This is

Fb

k
=

12
√

2q

TrB
|φ|, (5.9)

– 28 –



J
H
E
P
0
6
(
2
0
0
6
)
0
5
1

which is roughly |φ.| Hence, if φ can be stabilized with expectation value much less than

the string scale, the axion might have decay constant in the favored range 109GeV < Fb <

1012GeV.

In supersymmetric compactifications of the heterotic string, it seems difficult to stabi-

lize |φ| at small expectation values because of the D-term constraint

DB = q|φ|2 − ζ2 = 0 (5.10)

that has to be satisfied to preserve supersymmetry. This forces φ to acquire a nonzero

VEV |φ|2 = ζ2/q. Hence the b has axion decay constant

Fb =
√

2|φ| = MP

√
kαC Tr B

24πq
. (5.11)

From (5.4), (5.11) we see that Fb ∼ Fa so the optimistic hypothesis that Fb ¿ Fa does

not apply. Since the axion decays scales of a, b are comparable, to get a quantitative

description, we need to keep in the effective action both axions a, b and the anomalous

gauge field Bµ:

−1

2
F 2

a (∂µa− qaBµ)2 − 1

2
F 2

b (∂µb− qbBµ)2 − 1

4g2
B

tr FB,µνFµν
B + a

1

16π2
tr(F∧F )QCD (5.12)

Here qa = Tr B/12, qb = q. Diagonalizing (5.12), it can be shown that one linear combina-

tion of a, b gets eaten by the U(1)B gauge field, giving it a string scale mass. The other

linear combination survives to low energies as a Peccei-Quinn axion. Since Fa, Fb ∼ Ms,

the PQ axion has roughly string scale decay constant [66]. Having several fields φα charged

under U(1)B does not appear likely to change this conclusion.

Anomalous U(1)’s in type II string theory. It may be possible to make models with

low axion decay constant in Type II string with intersecting D-branes. Here, the axion

that cancels the U(1)B anomaly is a twisted RR axion [73, 72]. At tree level, the FI-term

is determined in Type IIA string by complex structure moduli and in Type IIB string by

Kahler moduli [76]. It has been argued that the one loop contribution to FI-terms (that

in heterotic string theory generates string scale FI-term) is absent in Type II-orientifolds

by reinterpreting the FI terms as closed string tadpoles [71, 74]. Hence, there might be a

value of moduli for which the FI-term of the anomalous U(1) is well below the string scale.

6. M-theory on a manifold of G2 holonomy

In the present section, we consider M -theory on a seven-manifold X of G2 holonomy,

which we call X. If one is not concerned about maintaining N = 1 supersymmetry in four

dimensions, much of the discussion applies to M -theory compactification on more general

seven-manifolds. We suppose that X contains a three-manifold Q of orbifold singularities,

leading to four-dimensional gauge fields. For example, Q may be a locus of A2 singularities,

leading to color SU(3) gauge fields, or A4 singularities, leading to a theory somewhat similar
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to SU(5) GUT’s in four dimensions. For the qualitative investigation of the axion coupling

parameters, such details are inessential.

Section 4 was also devoted to M -theory on a seven-manifold, of the form Z × I. The

main difference is the strategy for getting Standard Model gauge fields; in section 4, these

were supposed to arise at the boundary of the world, while in our present discussion, we

will get gauge fields from orbifold singularities.

From (2.27), it follows that in reduction on M ×X, the four-dimensional Planck scale

is given by

M2
P =

4πVX

`9
11

. (6.1)

The action for SU(3) (or SU(5)) gauge fields along M × Q is5

1

8π`3
11

∫

M×Q
d7x

√−g tr FµνFµν . (6.2)

Upon reduction to four dimensions and recalling the convention tr tatb = 1
2δab for Lie

algebra generators, this becomes

VQ

16π`3
11

∫

M
d4x

√−gF a
µνFµν a. (6.3)

So the color SU(3) gauge coupling at the compactification scale obeys g2
C = 4π`3

11/VQ or

equivalently

αC =
`3
11

VQ
. (6.4)

Axions arise from zero modes of the three-form field C of M -theory. If γi, i =

1, . . . , b3(X) are the harmonic three-forms on X, normalized so that

∫

Di

γj = δij , (6.5)

for a suitable basis of three-cycles Di, then we make an ansatz

C =
1

2π

∑

i

ciγi, (6.6)

where ci are massless fields on M . The kinetic energy for the ci is obtained by dimensional

reduction from (2.27). It is
1

2π`3
11

∫

M

1

2
γ̃M

ij dci ∧ ?dcj , (6.7)

where

γ̃M
ij =

∫

X
γi ∧ ?γj . (6.8)

5To get this formula, start with eq. (13.3.25) of [54], which shows that the kinetic energy for gauge

fields on a Type IIA D6-brane is (1/8πgs`
3

s)
R

d7x
√−g tr FµνF µν . Then convert to M -theory parameters

via the relation gs`
3

s = `311, which follows from the equality of D2-brane and M2-brane tensions using our

conventions in section 2.
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The ci have approximate shift symmetries because of the underlying gauge-invariance

of the C-field. They have axion-like couplings because the M -theory effective action at an

orbifold singularity includes a coupling

2π

∫

M×Q
C ∧ 1

8π2
tr F ∧ F. (6.9)

The existence and coefficient of this coupling follow from the analogous coupling on the

world-volume of a D6-brane in Type IIA superstring theory; note that the coupling in (6.9)

is quantized for topological reasons, so it is completely determined in M -theory by what it

is in Type IIA. (6.9) reduces in four dimensions to

∑

i

ki

∫

M
ci

1

8π2
tr F ∧ F, (6.10)

with

ki =

∫

Q
γi. (6.11)

Thus, the modes ci indeed have the couplings of axions.

Let us define a “radius” R of X by VX = R7. Under an overall scaling of the metric of

X, the integral in (6.7) scales like R. Thus if X is reasonably isotropic, a “generic” linear

combination of the ci has

F 2
c =

xR

2π`3
11

, (6.12)

where x is formally of order 1. Let us first assume that Q is a generic three-cycle, say

with RQ of order R. If we set RQ = R, then (6.12) and (6.4) give us Fc = xαCMP /2π
√

2,

a familiar sort of formula. With RQ of order R, compactification on a manifold of G2

holonomy can give reasonable GUT-like phenomenology and a sensible relations between

Newton’s constant and the GUT scale; these issues have been explored in [77]. In this

case, evidently, we expect the axion coupling parameter to be close to the GUT scale. The

action for a membrane wrapped on Q is precisely I = 2πR3
Q/`3

11 = 2π/αC , and indeed

such a membrane is equivalent to an instanton of the gauge theory. For RQ ∼ R, generic

membrane instantons have actions comparable to this. Hence, with αC ∼ 1/25, explicit

PQ violation at high energies might be small enough, subject to the usual caveats, to lead

to a solution of the strong CP problem.

Alternatively, we can ask what are the necessary parameters that give Fc in the range

allowed by the usual cosmological arguments. We can solve (6.1) and (6.12) for `11 and R

in terms of Fc and MP :

`11 =
1

Fc

(
MP

Fc

)1/6 x7/12

23/4π2/3

R = `11

(
MP

Fc

)1/3 1

21/2π1/3
. (6.13)

For 109 GeV . Fc . 1012 GeV, and taking x = 1, we have roughly

10

Fc
& `11 &

3

Fc

500`11 & R & 50`11. (6.14)
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Even at the lower end of this range, a generic membrane instanton action 2πR3/`3
11 is

prohibitively large, so significant PQ violation will come only from gauge instantons — or

from membranes wrapped on the vanishing cycles that we discuss later.

Similarly, we define a “radius” RQ of Q such that VQ = R3
Q. From (6.4), αC = `3

11/R
3
Q.

To get a reasonable value of αC , RQ must be fairly close to `11. It follows, therefore,

from (6.14) that if Fc is to be in the usual cosmological range, RQ must be substantially

less than R. So the three-cycle on which gauge fields are supported must be substantially

smaller than a generic three-cycle in X.

It is believed to be possible for a manifold X of G2 holonomy to develop, as its moduli

are varied, a supersymmetric “vanishing cycles” — a three cycle that collapse to zero even

as the metric on the rest of X has a limit. The example about which most is known is

the case that the vanishing cycle is a three-sphere S3 – or an orbifold quotient thereof,

S3/Γ, with Γ a finite group of symmetries. The local structure near the vanishing cycle is

given by an explicitly known [78, 79] asymptotically conical metric of G2 holonomy on the

manifold S3 ×R
4 (or an orbifold quotient thereof). Its role in M -theory has been analyzed

in some detail [80 – 82]

In our problem, to get Fc in the usual cosmological range, it is natural to assume that

Q is such a vanishing cycle — and the vacuum is near a point in moduli space at which VQ

would go to zero. (We do not know why the vacuum would be near such a point, but we

recall that for Type IIB superstring theory, mechanisms have been proposed [83] that can

lead to a vacuum near a point with a vanishing cycle.) In fact, the example that the local

structure is an orbifold quotient of S3 × R
4 has some of the right properties for us. By

dividing by a group Γ′ = Z3 or Γ′ = Z5 that acts only on R
4 with an isolated fixed point

at the origin, one can get SU(3) or SU(5) gauge fields supported on S3. In the SU(5) case,

if one also divides by a group Γ that acts freely on S3, one introduces the possibility of

spontaneously breaking SU(5) to the Standard Model. To include quarks and leptons, one

would need to complicate the singularity structure [84]. Such models have some obvious

potential problems; because the compactification scale is well below the usual GUT scale

(to get Fc in the usual cosmological range) it will be hard to avoid rapid proton decay or

to get the right low energy gauge couplings. A more complicated structure of vanishing

cycles might be necessary.

Axion physics with a small S3. In the case when X develops a vanishing S3, we can

be more precise in estimating Fc, as the explicit metric of the local G2 holonomy manifold

with vanishing S3 is known [79]. Locally the manifold has the topology S3×R
4/Γ, where Γ

is a finite subgroup of SU(2) with which we orbifold R
4 to get nonabelian gauge symmetry.

Asymptotically, the manifold is a cone over S3 × S3/Γ where the S3 is homologous to the

vanishing three-cycle Q and S3/Γ is the quotient of the unit three-sphere in R
4.

The axion decay constant is (6.7)

F 2
c =

1

2π`3
11

∫

X
γQ ∧ ?γQ, (6.15)

so a more precise evaluation of Fc amounts to a calculation of the norm of γQ.
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For Fc in the range allowed by standard cosmological arguments, the estimate (6.14)

gave R À RQ. Hence, to a high degree of accuracy, we can neglect the finite size of Q and

treat X locally as a cone over S3 × S3/Γ. We work in the “upstairs picture” on a cone

over S3 × S3. To take into account quotienting by Γ, one divides F 2
c at the end of the

calculation by |Γ|.
To write down the metric explicitly, we introduce invariant one-forms σi,Σi, i =

1, . . . , 3 on the two three-spheres. We normalize them so that the usual round metric on a

three-sphere with radius one is ds2 =
∑

i σ
2
i . With this normalization, σi obey the usual

SU(2) relations dσi = −1
2εijkσj ∧ σk and the volume form on S3 is just σ1 ∧ σ2 ∧ σ3. The

metric on the base of the cone, S3 × S3, is the squashed Einstein metric

ds2 = dr2 +
r2

9

(
σi −

Σi

2

)2

+
r2

12
Σ2

i ,

≡ dr2 + ν2
i + e2

i . (6.16)

In the second line we introduced the orthonormal basis νi = r(σi−Σi/2)/3, ei = rΣi/
√

12.

In writing the metric we chose Σi to be the one-forms of the non-contractible sphere Q.

The vanishing cycle Q is Poincare dual to a harmonic three-form [85], eq. (2.44), which in

the conical limit becomes

ω3 =
1

r3
εijkνi ∧ νj ∧ ek +

3

r3
e1 ∧ e2 ∧ e3. (6.17)

The Hodge dual of ω3 is

?ω3 =
dr

r3
(εijkνi ∧ ej ∧ ek − 3ν1 ∧ ν2 ∧ ν3) . (6.18)

The flux of ω3 through the non-contractible S3 is

∫

S3

ω3 =
π2

4
√

3
, (6.19)

so the three-form with unit flux through Q is γQ = 4
√

3ω3/π
2 and the axion comes from

the ansatz C = γQa/2π. We estimate the axion decay constant by substituting the explicit

form of γQ into (6.15)

F 2
c =

1

2π`3
11N

(
4
√

3

π2

)2
12

(6
√

3)3

∫

X
dr ∧ dσ1 ∧ dσ2 ∧ dσ3 ∧ dΣ1 ∧ dΣ2 ∧ dΣ3,

=
R

`11

24x

35/2πN
M2

11, (6.20)

where x is of order one and R = V
1/7
X is the linear size of X (at which we cut off the

integral). We divided the integral by |Γ| = N to take into account the orbifolding of X by

Γ. For SU(5) gauge symmetry along M × Q we take Γ = Z5. With |Γ| = 5, (6.20) comes

out to be roughly the same size as (6.12). There is an additional contribution to Fc from

the region that compactifies the cone. This gives an additive contribution to F 2
c of size

given by (6.12), hence it does not change (6.20) significantly.
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With the estimate (6.20) for Fc, we re-derive the values for M -theory scale M11 and

the size R of X in terms of MP and Fc

M11 = Fc

(
Fc

MP

)1/6 335/24π2/3N7/12

213/6x7/12
,

R = `11

(
MP

Fc

)1/3 21/3x1/6

35/12π1/3N1/6
. (6.21)

For Fc in the range allowed by standard cosmological constraints, setting x = 1, N = 5, we

find

Fc

6
. M11 .

Fc

2
,

550`11 & R & 55`11. (6.22)

We see that the more precise calculation of Fc does not change the result (6.14) significantly.

Anisotropic seven-manifolds. So far we have assumed that our manifold X of G2

holonomy is reasonably isotropic, with gauge fields supported either on a generic cycle or

on a vanishing cycle. It is also possible for X to be highly anisotropic.

A G2 manifold can have two types of supersymmetric fibration: a fibration by three-tori

over a four-dimensional base, or by K3 surfaces over a three-dimensional base. Apart from

special constructions involving orbifolds (as opposed to more generic G2 manifolds), these

are the most obvious kinds of highly anisotropic G2 manifolds. Much of our discussion, in

any case, has nothing to do with supersymmetry and would carry over to other kinds of

highly anistopropic manifold.

Some features of these two types of example can be treated together. We refer to the

fiber as F and the base as B; we write d for the dimension of the fiber (so d = 3 or 4), and

we express the volumes as VX = VF VB , VF = Rd
F , VB = R7−d

B . We only need to consider

the case that RF ¿ RB. If RF ∼ RB , we are back in the case we have already considered of

a more or less isotropic manifold. It is generically impossible in a supersymmetric fibration

to have RF À RB, but in any case, when this occurs one should look for an alternative

description with the roles of F and B exchanged.

The four-dimensional reduced Planck mass obviously becomes

M2
P =

4πVF VB

`9
11

. (6.23)

The generalization of the formula (6.4) for αC depends on the geometry. Let us suppose

that Q has a dimensions wrapped on F and 3 − a wrapped on B, and that F and B are

each more or less anisotropic. In this case,

αC =
`3
11

VQ
= y

`3
11

Ra
F R3−a

B

(6.24)

where y is a constant of order 1. Obviously, this formula could be substantially changed

if Q wraps vanishing cycles in either F or B. This would lead to a hybrid of our present

discussion of anisotropic X with the earlier discussion of vanishing cycles.
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Similarly, the estimation of Fc depends on what kind of three-cycle we consider. If ω

is a harmonic three-form on X with b indices tangent to F and 3 − b indices tangent, and

we keep the topological class of ω fixed while letting RF and RB vary, then
∫
X ω ∧ ?ω ∼

VX/R2b
F R6−2b

B . In general (as described most fully by the appropriate “spectral sequence”),

a harmonic form is a sum of components with different values of b. For RF ¿ RB, the

component with the largest b will dominate. The analog of (6.12) for a generic axion c

with a given largest value of b is

F 2
c =

xVX

2π`3
11R

2b
F R6−2b

B

. (6.25)

To make Fc small, we want b to be as small as possible. However, if b < a, then the

mode c does not have an axionic coupling to gauge fields that are supported on M×Q. The

smallest relevant Fc therefore has b = a. For such a mode, we can combine (6.25), (6.24),

and (6.23) to the familiar order of magnitude relation Fc ∼ αCMP .

Thus, taking X to be highly anisotropic is not an efficient way to reduce the order of

magnitude of Fc. To get a small Fc from a fibration with RF ¿ RB , we must assume that

Q is wrapped on a vanishing cycle in either F or B.

The arguments that we have just given also apply to other examples (such as gauge

fields supported on Type II D-branes) that we will consider later.

7. Intersecting D-brane models

In this section, we consider intersecting D-brane models both in type IIA and IIB string

theory. We assume that gauge symmetry lives on D(3+q)-branes which are extended along

the four noncompact dimensions and wrap a q-cycle Q in the compactification manifold.

In Type IIA, one takes a stack of five D6-branes wrapped around M × Q where M is the

Minkowski space and Q is a compact special Lagrangian three-cycle in the compact mani-

fold X. In Type IIB, one takes instead D3, D5 or D7-branes wrapping a holomorphic cycle

in X. Three D-branes wrapping a cycle Q support U(3) gauge theory whose nonabelian

part could be the QCD gauge symmetry. Five D-branes would lead instead to a theory

somewhat similar to an SU(5) GUT. In case that the q-cycle Q has nonzero π1(Q), we

can break the GUT gauge group down to the Standard Model gauge group by turning on

discrete Wilson lines.

The low energy effective supergravity action contains the gravitational term (2.24)

SGR =
2π

g2
s`

8
s

∫ √−gR. (7.1)

Dimensionally reducing the Einstein action to four dimensions determines the Planck mass

M2
P = 4π

VX

g2
s`

8
s

. (7.2)

The low energy action of the RR q-form field Cq is, [54] eq. (13.3.5),

− 2π

`8−2q
s

∫
1

2
Fq+1 ∧ ?Fq+1 + 2π

∫
Cq, (7.3)
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where the second term is the coupling of the q form to D(q − 1) branes. We normalized

Cq so that the RR field strength Fq+1 has integer periods. Thus, our RR-field is related to

the usual one Cq,conv by Cq,conv = `q
sCq.

The effective action of the gauge theory living on the D-branes is, [54] eq. (13.3.25)

SYM = − 1

4(2π)gs`
4+q
s

∫
dqx

√−g tr FµνFµν , (7.4)

where the trace is in the fundamental N representation of SU(N). Reducing the gauge

action on Q to four dimensions leads to the action

− VQ

8(2π)gs`
q
s

∫
d4x

√−gF a
µνFµν a, (7.5)

where we used the normalization of SU(N) generators tr tatb = 1
2δab that is conventional

in the GUT literature. From (7.5) we read off the four-dimensional gauge coupling

αGUT =
gs`

q
s

VQ
. (7.6)

In type II string theory, the axions come from zero modes of the q-form gauge field

Cq. The axions are the phases 2π
∫
Q Cq necessary for the complete definition of the string

theory path integral in the presence of D(q − 1) branes. They are angular variables with

period 2π. Let Qα, α = 1, . . . , bq(X) be an integral basis of the homology group Hq(X, Z)

modulo torsion. We take ωα to be harmonic representatives of the basis of Hq(X) dual to

the basis Qα, so that
∫
Qα

ωβ = δαβ .

The axions come from the ansatz

Cq =
1

2π

∑

α

aαωα, α = 1, . . . , bq(X). (7.7)

We included a factor of 1/2π so that aα have period 2π. Substituting this into the RR-field

effective action (7.3) we get the kinetic energy of the axions

S = −1

2

∑

α,β

γαβ∂µaα∂µaβ , (7.8)

where

γαβ =
1

2π`8−2q
s

∫

X
ωα ∧ ?ωβ. (7.9)

The axions acquire axionic couplings from the D-brane Chern-Simons term, (13.3.18) of [54]

2π

∫

M×Q
Cq ∧

1

8π2
tr F ∧ F. (7.10)

Dimensionally reducing this to four dimensions using the ansatz (7.7) leads to the couplings

∑

α

rα

∫
aα

tr F ∧ F

8π2
, (7.11)

where rα =
∫
Q ωα are integers.
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Let us first consider branes wrapping a q-cycle Q with q > 0. The case q = 0 with a

stack of D3 branes localized at a point will be considered later. We define R to be linear

size of X, so that VX = R6. In terms of R, the Planck mass is

M2
P =

4πR6

g2
s`

8
s

. (7.12)

For a generic axion,
∫
X ωQ ∧ ?ωQ = xR6−2q, where x is of order one, so

Fa =

√
xR6−2q

2π`8−2q
s

= MP

(
`s

R

)q
√

xg2
s

8π2
, (7.13)

where x is a dimensionless number of order one. Hence Fa is in the phenomenologically pre-

ferred range if either gs ¿ 1 or R À `s. The first possibility is excluded by considerations

about gauge couplings. Indeed, if the gauge symmetry comes from D-branes wrapping a

q-cycle Q of radius RQ = V
1/q
Q , the four-dimensional gauge coupling is αC = gs`

q
s/R

q
Q.

To have a good perturbative description, RQ should not be much smaller than `s so that

α′ corrections are suppressed (otherwise we can go into a T-dual description, in which

RQ & `s. Setting RQ & `s gives an upper bound on the string coupling gs & αC . Hence,

we do not have a freedom to lower gs to arbitrarily small values. The latter possibility

leads to low scale axions if the compactification manifold has very large size in string units.

To estimate the parameters of the compactification that lead to phenomenologically

preferred axion decay constants, we express R and Ms = `−1
s in terms of Fa,MP from (7.12)

and (7.13):

R = `s

(
MP

Fa

) 1

q
(

xg2
s

8π2

) 1

2q

,

Ms = Fa

(
Fa

MP

) 3−q

q
(

2π

x

) 1

2

(
8π2

xg2
s

) 3−q

2q

. (7.14)

Requiring that the axion decay constant falls into the range 109GeV ≤ Fa ≤ 1012GeV

implies large compactification radius R À `s and a low string scale Ms ¿ MGUT.

In these compactifications, gauge symmetry lives on D-branes wrapping a cycle Q.

The radius of Q is at most a few string lengths; otherwise, the string coupling necessary for

getting the correct four-dimensional gauge coupling gs = αC(R/`s)
q get nonperturbatively

large and our target space effective description breaks down. Hence, Q is a ‘vanishing’ cycle

in X with RQ ¿ R. A possible moduli stabilization mechanism that fixes the moduli of X

in this regime has been recently discussed in [86, 39]. The actual results for the preferred

compactification parameters depend on which q-form RR-field does the axion originate

from and on the geometry of the compactification manifold. In section 7.1, we give a more

precise treatment of compactifications with vanishing cycles in two concrete examples.

Asymmetric Calabi-Yau manifolds. As an alternative to assuming that Q is a vanish-

ing cycle, one can ask whether taking an asymmetric Calabi-Yau manifold that is a fibration

with small fiber F over a large base B could substantially lower the axion coupling param-

eter. Based on our experience with heterotic string in section 3 we expect that the decay

constants of axions in asymmetric compactifications are still around the GUT scale.
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To explore this question, we will consider supersymmetric fibrations with T 2, T 3 or K3

fibers, but our conclusions apply to more general fibrations (including nonsupersymmetric

ones). The volume of the Calabi-Yau manifold is VX = VBVF , hence the reduced Planck

mass (7.2) is

M2
P =

4πVBVF

g2
s`

8
s

. (7.15)

We let RF be the ‘radius’ of the fibre, so that VF = Rd
F and RB be the ‘radius’ of the base

VB = R6−d
B . An axion coming from a zero mode of the q-form field Cq with b indices along

the fibre and q − b indices along the base has axion coupling parameter (7.9)

F 2
a =

xVX

2π`8−2q
s R2q−2b

B R2b
F

, (7.16)

where x is a dimensionless number of order one. We assume that the gauge symmetry

comes from a D(3 + q)-branes wrapping a cycle with a dimensions wrapped around the

fibre and q − a dimensions wrapped along the base, so the gauge coupling is

αC =
gs`

q
s

Ra
F Rq−a

B

. (7.17)

The axionic coupling is nonzero only for axions with b = a. For these, we find

Fa =

√
xαC

2π

MP√
2

, (7.18)

which gives the familiar answer ∼ 1016GeV.

D3-brane models. The cycle that the D3-branes “wrap” is a point which results in a

different behavior of the axion decay parameter compared to other string theories. Hence,

there is no hierarchy between the size of the vanishing cycle and the size of the compact-

ification manifold that could help lower the axion decay constant. The low energy gauge

group on N D3-branes at a generic point in X is U(N). The gauge coupling is fixed by

the string coupling (7.4):

αC = gs. (7.19)

The axions are four-dimensional fields coming from reduction of the RR zero-form. A

harmonic zero-form is just a constant, so we use the ansatz

C0 =
a

2π
, (7.20)

where a is a four-dimensional pseudo-scalar field. It follows from the D-brane Chern-Simons

coupling (7.10) that the axion has r = 1 coupling to the QCD instanton density
∫

a
tr F ∧ F

8π2
. (7.21)

The kinetic energy of the RR zero-form (7.3) is easily reduced to four dimensions, giving

the axion kinetic energy
VX

2π`8
s

∫
d4x

(
−1

2
∂µa∂µa

)
, (7.22)
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whence the axion coupling constant is

Fa =

√
VX

2π`8
s

=
αC

2π

MP√
2

. (7.23)

If we take αC ∼ 1/25, we get Fa = 1.1× 1016GeV, which is the same as the axion coupling

parameter of the model-independent axion in weakly coupled heterotic string theory. The

shift symmetry of the axion is explicitly broken by D(−1)-brane instantons that are located

on the D3-brane worldvolume. These instantons are equivalent the SU(N) gauge theory

instantons. Their action is I = 2π/gs = 2π/αC . With αC ∼ 1/25, their action is I ∼ 157,

so the explicit violation of the shift symmetry might be small enough for the axion to be

a candidate for Peccey-Quinn axion.

7.1 Intersecting D-brane models with small cycles

In the previous subsection we found that the axion coupling parameter can be lowered

in type II string theory, if the the gauge symmetry comes from D-branes wrapping a

vanishing cycle. To lower Fa into the range 109GeV < Fa < 1012GeV, the radius of the

compactification manifold has to be much larger than the string length. This lowers the

string scale relative to the Planck scale. We estimated this in (7.14).

To get a more precise estimate of the physical scales involved in getting Fa in the

phenomenologically preferred range, we study in detail the compactification of Type II

string on a CY manifold X that is developing a conifold singularity. The vanishing cycle

at the tip is either an S2 or an S3, depending on whether the conifold is resolved or

deformed. To get SU(5) gauge symmetry, we wrap a stack of five D5 or D6-branes around

the vanishing cycle. The D-branes warp the geometry in a region of size ` ∼ (gsN)1/4`s, as

is familiar from AdS/CFT correspondence. For N = 5, that is necessary for SU(5) gauge

symmetry, the warped region has size around the string length. Since we took the radius

of the CY manifold much larger than the string length, we can neglect the effect of the

warping on the axion coupling parameter Fa ∼
∫
X ω ∧ ?ω.

The conifold is a cone over T 1,1, where T 1,1 is topologically S2 × S3. It is an S1

fibration over S2 × S2. Its the metric is [87, 88]

ds2 = dr2 + r2dsT 1,1 . (7.24)

To describe the metric of T 1,1, we parametrize the S1 fiber with ψ, which ranges from 0 to

4π and the two S2’s with spherical coordinates (θi, φi), i = 1, 2. We introduce the following

basis of one-forms [88]

g1 =
e1 − e3

√
2

, g2 =
e2 − e4

√
2

,

g3 =
e1 + e3

√
2

, g4 =
e2 + e4

√
2

,

g5 = e5, (7.25)
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where

e1 = − sin θ1dφ1, e2 = dθ1,

e3 = cos ψ sin θ2dφ2 − sinψdθ2,

e4 = sin ψ sin θ2dφ2 + cos ψdθ2,

e5 = dψ + cos θ1dφ1 + cos θ2dφ2. (7.26)

In terms of these, the T 1,1 metric takes the form

dsT 1,1 =
1

9
(g5)2 +

1

6

4∑

i=1

(gi)2. (7.27)

On the conifold, there are harmonic two- and three-forms

ω2 =
1

2
(g1 ∧ g2 + g3 ∧ g4),

ω3 = g5 ∧ ω2. (7.28)

Their Hodge duals are

?ω2 =
r

3
dr ∧ ω3 ? ω3 = −3

dr

r
∧ ω2. (7.29)

If we think of T 1,1 as an S2 fibration over S3, then ω2 has nonzero flux through the S2

fiber and ω3 has nonzero flux through the S3 base of the fibration. To find these fluxes,

we take a representative S2 fiber with ψ = 0, θ1 = θ2 and φ1 = −φ2. The S3 base can be

defined with the equations ψ2 = φ2 = 0. Integrating the explicit expressions (7.28) for the

harmonic two and three-forms over the cycle representatives gives

∫

S2

ω2 = 4π,

∫

S3

ω3 = 8π2. (7.30)

The use of these formulas is the following. The cone over T 1,1 can be slightly resolved

or deformed to make a smooth six-manifold X ′ with a small S2 or S3 at its center. (We

think of X ′ as an approximation to part of a compact Calabi-Yau manifold X.) We obtain

gauge theory by wrapping D-branes on the vanishing cycle, that is, on the small S2 or

S3. The gauge coupling is inversely proportional to the volume of the vanishing cycle,

and so depends crucially on the details of the resolution or deformation of the cone. The

axion that couples to these gauge fields comes from a harmonic two-form or three-form

on X, which we approximate by a harmonic two-form on X ′. As there is no L
2 harmonic

two-form or three-form on X ′, this form is not supported near the vanishing cycle, and in

describing it we can simply approximate X ′ by the cone. The relevant harmonic two-form

and three-form on the cone are simply the pullbacks of the harmonic forms ω2 and ω3

on T 1,1.
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Type IIB. Let us first consider the type IIB string theory with gauge symmetry com-

ing from D5-branes wrapping the vanishing S2. If the radius of the S2 is r0, the gauge

coupling is

αGUT =
gs`

2
s

4πr2
0

. (7.31)

The axion comes from a mode of the RR two-form field C2 that is the product of a four-

dimensional field a with a harmonic two-form field that has nonzero flux over the vanishing

cycle S2. Since this harmonic two-form is not supported near the vanishing cycle, we can

approximate it by a harmonic form on the cone, which in fact is a pullback of the harmonic

form ω2 from the five-manifold T 1,1. Thus, the ansatz for the RR two-form is

C2 =
ω2

4π

a

2π
. (7.32)

We used (7.30) to normalize a to have 2π periods. To find the axion decay constant, we

substitute the ansatz (7.32) into the formula for the axion decay constant (7.9). With the

help of (7.29), we get

F 2
b =

1

3(32π3)`4
s

∫
rdr

∫

T 1,1

ω2 ∧ ω3. (7.33)

According to (7.30), the integral over T 1,1 is
∫
T 1,1 ω2∧ω3 = 32π3. We estimate the integral

over the radial direction of the cone with
∫

rdr = xR2/2. Here, R = V
1/6
X is the size of

X and x is a number of order one that depends on the details of X. Thus, the axion

supported near the vanishing S2 has

Fb =

√
x

6

R

`2
s

. (7.34)

From (7.2) and (7.34), we express R and Ms = `−1
s as

R = `sg
1/2
s

(
MP

Fb

)1/2 ( x

24π

)1/4
,

Ms =
Fb

g
1/2
s

(
Fb

MP

)1/2 (
2533π

x3

)1/4

. (7.35)

For Fb in the range preferred by phenomenological considerations 109GeV . Fa . 1012GeV,

with x = 1, we have

1.5 × 105GeV . Msg
1/2
s . 5 × 109GeV,

1.6 × 104`s &
R

g
1/2
s

& 5 × 102`s. (7.36)

To assess whether the explicit breaking of the Peccei-Quinn symmetry is sufficiently

small, we estimate the actions of instantons that break it. Generic instantons are Euclidean

D1-branes wrapping cycles of size ∼ R. They have very large action I ∼ 2πR2/gs`
2
s,

since R À `s. It follows that these instantons break Peccei-Quinn symmetry negligibly.

The main violation of the PQ-symmetry comes from D1-brane instantons that wrap the

vanishing S2. They have action I = 2πVQ/gs`
2
s = 2π/αGUT ∼ 157. Hence, with some help

from low-energy supersymmetry, the PQ-symmetry might be able to explain the strong

CP-problem.
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Type IIA. In IIA string theory, we get gauge symmetry by wrapping D6-branes around

the small S3 of the deformed conifold. If the S3 has radius r0, the gauge coupling is

αGUT =
gs`

3
s

2π2r3
0

. (7.37)

The axions is a four-dimensional scalar b coming from a zero mode of the RR three-form

field C3:

C3 =
ω3

8π2

b

2π
. (7.38)

ω3 is a harmonic three-form on X with a nonzero flux through the vanishing S3. We

approximate it by a harmonic form on the cone, which is a pullback of the harmonic form

ω3 (7.28) on T 1,1. With the help of (7.30), we normalized the C-field so that the axion b has

period 2π. We find Fb from the general formula for the decay constant of an RR-axion (7.9)

F 2
b =

1

2π`2
s

(
1

8π2

)2 ∫

X
ω3 ∧ ?ω3 =

3x

4π2`2
s

ln

(
R

r0

)
, (7.39)

where x is a dimensionless number of order one. In the evaluation of the integral, we ap-

proximated the space X with just the conical region. The integral over the radial direction

of the cone diverges both for large and small radius. We cut off the large distance diver-

gence of the integral at the radius R of X and the short distance divergence at the radius

r0 of the vanishing S3. Since the harmonic three-form is not supported near the vanishing

cycle, the main contribution to the integral comes from the logarithm ln(R/r0). We are

justified to neglect the corrections from the region near the tip of the deformed conifold

and from the region that compactifies the conifold, as long as R À r0. If we assume that

the gauge coupling at the string scale is αGUT ∼ 1/25, it follows from (7.37) that r0 ∼ `s.

But we already know from our estimate (7.14) that R À `s, whence it follows that R À r0

and our approximations are self-consistent.

To find the range of the string compactification parameters that lead to phenomeno-

logically acceptable axion, we express Ms and R from (7.39) and (7.2), as

Ms =
2πFb√

3x ln (R/r0)
,

R = `s

(
MP

Fa

)1/3

g1/3
s

(
3x ln (R/r0)

24π3

)1/6

. (7.40)

For 109GeV . Fb . 1012GeV and x = 1, we have

1.4 × 109GeV . Ms . 1.8 × 1012GeV,

800`s &
R

g
1/3
s

& 73`s. (7.41)

8. Type I string theory

Just like heterotic string theory, compactifications of type I string has a model dependent-

axion and a number of model-dependent axions. These come from zero modes of the RR
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two-form field C. The computations of axion properties in type I string are analogous to

the ones in heterotic string. Here, we will illustrate them in the case of model-independent

axion. For some aspects of axion physics in Type I orbifold compactifications, see [89].

The type I supergravity action is (12.1.34) of [54]

S =
2π

`8
sg

2
s

∫
d10x(−g)1/2R − 4π

`4
s

∫
1

2
F3 ∧ ?F3 −

√
2

4(2π)gs`6
s

∫
tr F2 ∧ ?F2. (8.1)

where F2 is the SO(32) gauge field strength and tr is the trace in the 32 vector representa-

tion of SO(32). We fixed the normalization of the string coupling gs using the convention

κ2 = g2
sκ

2
10 = g2

s`
8
s/4π, (8.2)

and we substituted the gauge coupling from eq. (13.3.31) of [54]:

g2
YM = 2(2π)3/2`2

sκ =
√

2(2π)gs`
6
s. (8.3)

We normalized the RR-two form, so that its field-strength, (12.1.35) of [54]

F3 = dC − 1

16π2
ω3(A) (8.4)

has integer periods. Thus, our C-field is related to Cconv of [54] via Cconv =
√

2`2
sC.

From (8.1) we read off the four-dimensional gauge and gravitational couplings

αGUT =
gs`

6
s√

2VX

M2
P =

4πVX

g2
s`

8
s

. (8.5)

Here, we assume usual embedding SU(5) ⊂ SO(10) ⊂ SO(32) of SU(5) in SO(32).

The model-independent axion, comes from a mode of the C field constant on X with

all indices along the Minkowski space. As explained in section 3 in our study of model-

independent axion in heterotic string theory, the axion decay constant is the inverse of the

coefficient of the C-field kinetic energy

Fa =
`2
s√

4πVX
=

MP√
2

αGUT

2π
. (8.6)

This gives Fa = 1.1× 1016GeV, which is same as the axion decay constant of the heterotic

string model-independent axion. Indeed, under the heterotic-type I duality, the RR C-field

model independent axion of type I string goes into the NS-NS B-field model independent

axion of heterotic string theory.

9. Axion coupling to photons

This concluding section is devoted to a topic in axion physics that has nothing to do with

string theory. We will reconsider a matter discussed in section 2, namely the axion-photon

coupling. This coupling has a contribution from short distance axion physics and another

contribution from low energy QCD strong coupling effects. In section 2, we evaluated
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the first type of contribution in a unified SU(5) gauge theory. To get the physical axion-

photon coupling, one must also evaluate QCD strong coupling effects that mix the axion

with the π0. These effects have been previously determined in [90 – 92] using current algebra

techniques. Here we will provide a new derivation of this coupling based on the relevant

low energy effective Lagrangian.

In section 2, we described the kinetic term and the mass term of the low energy effective

Lagrangian describing pion physics

S0 = −F 2
π

16

∫
tr

(
U−1∂µU

) (
U−1∂µU

)
+

v

2
tr

(
MU + MU †

)
. (9.1)

Here U takes values in the group manifold SU(3) and Fπ = 184MeV is the pion decay

constant. U is conventionally parametrized as

U(x) = exp

(
2i

Fπ

8∑

a=1

λaπa(x)

)
, (9.2)

where λa are the generators of the SU(3) algebra normalized as Tr λaλb = 2δab. If we

integrate out the s quark, which is much heavier than the u, d quarks, then U is an element

of SU(2) and we take λa = σa, a = 1, 2, 3 to be the Pauli matrices.

The anomalous couplings of pions are summarized in the Wess-Zumino-Witten term

[93, 94]. To write it down, we let D be a five-dimensional space bounding our four-

dimensional spacetime. We extend U to a map from D to SU(3). The WZW term is [94]

Γ = − iNc

2π2 × 5!

∫

D
dΣijklm(U−1∂iU)(U−1∂jU)(U−1∂kU)(U−1∂lU)(U−1∂mU), (9.3)

where dΣijklm is the five-dimensional volume element on D. The integrand is Nc times the

generator of H5(SU(3), 2πZ), where Nc = 3 is the number of colors. The factor of 2 in the

denominator comes from the Bott periodicity theorem [95].

9.1 Gauging electromagnetism

The WZW action (9.3) captures the anomalous couplings between the pions and axions.

The couplings of the pion and axion to the photon can be described by a gauged version of

the WZW term. Let us discuss briefly how one gauges the action S = S0 + Γ. For further

details, see [94]. The action S is invariant under the global U(1)EM symmetry

δU = iε[Q, U ], (9.4)

where Q is the electric charge matrix of the u, d, and s quarks

Q =




2
3 0 0

0 −1
3 0

0 0 −1
3


 . (9.5)

We now promote U(1)EM to a local gauge symmetry. This is accomplished as follows.

The kinetic term S0 becomes gauge-invariant if we replace the ordinary derivatives with

covariant ones

Dµ = ∂µ + ieAµ[Q, ]. (9.6)
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The U(1)EM gauge field is canonically normalized so it transforms as Aµ → Aµ−∂µλ under

a gauge transformation λ.

The WZW term cannot be written in four dimensions as an integral of a manifestly

SU(3) × SU(3) invariant expression, so the standard gauging procedure is not applicable

to it. Instead, the gauge invariant generalization of Γ can be obtained using the Noether

procedure. A short calculation shows that the desired modification of Γ that makes it

gauge invariant is [94]

Γ̃ = Γ − e

∫
d4xAµJµ +

ie2

24π2

∫
d4x εµναβ (∂µAν) Aα

× tr [Q2 (∂βU) U−1 + (∂βU)Q2U−1 + Q (∂βU)QU−1], (9.7)

where

Jµ =
1

48π2
εαβγδ tr

[
Q

(
∂νUU−1

) (
∂αUU−1

) (
∂βUU−1

)

+Q
(
U−1∂νU

) (
U−1∂αU

) (
U−1∂βU

)]
. (9.8)

The reason that we started with three flavors was that this gave a convenient way to

determine the anomalous interactions, which are summarized in (9.7). Now that we have

determined those interactions, we can for our purposes here omit the strange quarks and

reduce to the case of two flavors.

9.2 Axion-photon coupling

In eq. (2.23), we determined the part of the axion-photon coupling coming from explicit

coupling of the axion to the SU(5) gauge fields:

4r

3

α

8πFa
a εµναβFµνFαβ =

4r

3π

α

Fa
a ~E · ~B. (9.9)

Here a is the canonically normalized axion which has periods 2πFa. Now, we will compute

the additional contribution to the axion-photon coupling due to the mixing of the axion

with the neutral pion. The axion enters the effective action as a phase of the determinant

of the quark mass matrix. In the two-flavor approximation, we can take this mass matrix

to be

M =

(
exp(−icua/Fa)mu 0

0 exp(−icda/Fa)md

)
, (9.10)

where cu + cd = 1 so that det(M) ∝ exp(−ia). The (π0, a) mass matrix comes from

expanding the mass term (9.1) to quadratic order

Lm =
v

2
tr

(
MU + MU †

)

= − 2v

F 2
π

(mu + md)

[
π0 − aFπ

2Fa

cumu − cdmd

mu + md

]2

− v

2F 2
a

mumd

mu + md
a2. (9.11)

From (9.11) we read off the masses of the pion and the axion

m2
π =

4v

F 2
π

(mu + md), m2
a =

m2
πF 2

π

4F 2
a

mumd

(mu + md)2
. (9.12)
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The anomalous QCD contribution to the coupling of axion and pion to two photons comes

from the last term in the gauged WZW term (9.7), since this is the only piece quadratic

in the U(1)EM gauge field. To find these couplings, we perform the SU(2)L axial rotation

U →
(

exp(+icu
a
Fa

) 0

0 exp(+icd
a

Fa
)

)
U (9.13)

and expand (9.7) to first order in π0 and a. The couplings to two photons are

− α

8π

(
a

3Fa
(4cu + cd) + 2

π0

Fπ

)
εµναβFµνFαβ . (9.14)

To determine the axion-photon coupling from (9.14) we take a shortcut and set cumu−
cdmd = 0 so that the axion does not mix with the neutral pion in the axion-pion mass

matrix (9.11). This condition together with the constraint cu + cd = 1 determines cu =

md/(mu + md), cd = mu/(mu + md). Substituting this into the axion-photon vertex (9.14)

gives the axion-photon coupling

−r

3

α

8πFa

mu + 4md

mu + md
a εµναβFµνFαβ . (9.15)

To get the complete coupling of the axion to two photons we add to this the SU(5) contri-

bution (9.9)

r

3

α

8πFa

(
4 − mu + 4md

mu + md

)
a εµναβFµνFαβ = − rα

πFa

mu

mu + md
a ~E · ~B. (9.16)

The coupling (9.16) depends on the mass ratio of of the light quarks and it vanishes for

mu = 0. In the nature md/mu ' 1.8/1, hence the axion to two photons coupling is

suppressed by a factor of ∼ 4 compared to the SU(5) result (9.9) alone without the QCD

correction.
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[56] M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630

[hep-th/9110053].

[57] E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471

(1996) 135 [hep-th/9602070].
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